

Einführung in die Funktionale Programmierung:

Typisierung

Prof Dr. Manfred Schmidt-Schauß

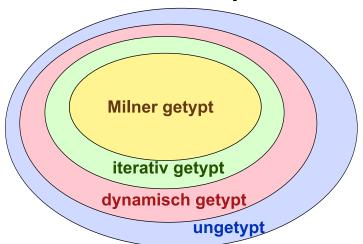
WS 2021/22

- Motivation
- Typen: Sprechweisen, Notationen und Unifikation
- Typisierungsverfahren
 - Iteratives Typisierungsverfahren
 - Das Hindley-Milner-Typisierungsverfahren
- Typklassen

- Warum typisieren?
- Typisierungsverfahren für Haskell bzw. KFPTS+seq für parametrisch polymorphe Typen
- Iteratives Typisierungsverfahren
- Milnersches Typisierungsverfahren

Übersicht: Expression und Typen

KFPTS+seq



Motivation

Warum ist ein Typsystem sinnvoll?

- Für ungetypte Programme können dynamische Typfehler auftreten
- Fehler zur Laufzeit sind Programmierfehler
- Starkes und statisches Typsystem
 - ⇒ keine Typfehler zu Laufzeit
- Typen als Dokumentation
- Typen bewirken besser strukturierte Programme
- Typen als Spezifikation in der Entwurfsphase

Minimalanforderungen:

- Die Typisierung sollte zur Compilezeit entschieden werden.
- Korrekt getypte Programme erzeugen keine Typfehler zur Laufzeit.

Minimalanforderungen:

- Die Typisierung sollte zur Compilezeit entschieden werden.
- Korrekt getypte Programme erzeugen keine Typfehler zur Laufzeit.

Wünschenswerte Eigenschaften:

- Typsystem schränkt wenig oder gar nicht beim Programmieren ein
- Compiler kann selbst Typen berechnen = Typinferenz

Es gibt Typsysteme, die diese Eigenschaften nicht erfüllen:

- Z.B. Simply-typed Lambda-Calculus: Getypte Sprache ist nicht mehr Turing-mächtig, da dieses Typsystem erzwingt, dass alle Programme terminieren
- Erweiterungen in Haskells Typsystem: Typisierung / Typinferenz ist unentscheidbar. U.U. terminiert der Compiler nicht!. Folge: mehr Vorsicht/Anforderungen an den Programmierer.
- Typsysteme mit dependent types sind aktuell im Fokus der Forschung; und werden in Haskell-ähnlichen Programmiersprachen erprobt. Diese sind komplexer als polymorphe Typisierung.

Naiver Ansatz: KFPTS+seq

Naive Definition von "korrekt getypt":

Ein KFPTS+seq-Programm ist korrekt getypt, wenn es keine dynamischen Typfehler zur Laufzeit erzeugt.

Naive Definition von "korrekt getypt":

Ein KFPTS+seq-Programm ist korrekt getypt, wenn es keine dynamischen Typfehler zur Laufzeit erzeugt.

Funktioniert nicht gut, denn

Die dynamische Typisierung in KFPTS+seq ist unentscheidbar!

Unentscheidbarkeit der dynamischen Typisierung

Sei tmEncode eine KFPTS+seg-Funktion, die sich wie eine universelle Turingmaschine verhält:

- Eingabe: Turingmaschinenbeschreibung und Eingabe für die TM
- Ausgabe: True, falls die Turingmaschine anhält

Beachte: tmEncode ist in KFPTS+seg definierbar und nicht dynamisch ungetypt (also dynamisch getypt)

(Haskell-Programm auf der Webseite, Archiv?)

Unentscheidbarkeit der dynamischen Typisierung (2)

Für eine TM-Beschreibung b und Eingabe e sei

```
s :=  if tmEncode b e
          then case_{Bool} Nil of \{True \rightarrow True; False \rightarrow False\}
          else case_{Bool} Nil of \{True \rightarrow True; False \rightarrow False\}
```

Es gilt:

s ist genau dann dynamisch ungetypt, wenn die Turingmaschine b auf Eingabe e hält.

Daher: Wenn wir dynamische Typisierung entscheiden könnten, dann auch das Halteproblem

Satz

Die dynamische Typisierung von KFPTS+seq-Programmen ist unentscheidbar.

Syntax von polymorphen Typen:

$$\mathbf{T} ::= TV \mid TC \mathbf{T}_1 \ldots \mathbf{T}_n \mid \mathbf{T}_1 \to \mathbf{T}_2$$

wobei TV Typvariable, TC Typkonstruktor Sprechweisen:

- Ein Basistyp ist ein Typ der Form TC, wobei TC ein nullstelliger Typkonstruktor ist.
- Ein Grundtyp (oder alternativ monomorpher Typ) ist ein Typ, der keine Typvariablen enthält.

Beispiele:

- Int, Bool und Char sind Basistypen.
- [Int] und Char -> Int sind Grundtypen, aber keine Basistypen.
- [a] und a -> a sind weder Basistypen noch Grundtypen.

Wir verwenden für polymorphe Typen die Schreibweise mit All-Quantoren:

- Sei τ ein polymorpher Typ mit Vorkommen der Variablen α_1,\ldots,α_n
- Dann ist $\forall \alpha_1, \dots, \alpha_n. \tau$ der all-quantifizierte Typ für τ .
- Da die Reihenfolge der α_i egal ist, verwenden wir auch $\forall \mathcal{X}.\tau$ wobei \mathcal{X} Menge von Typvariablen

Später: Allquantifizierte Typen dürfen kopiert und umbenannt werden.

Typen ohne Quantor dürfen nicht umbenannt werden!

Eine Typsubstitution ist eine Abbildung einer endlichen Menge von Typvariablen auf Typen, Schreibweise:

$$\sigma = \{\alpha_1 \mapsto \tau_1, \dots, \alpha_n \mapsto \tau_n\}.$$

Formal: Erweiterung auf Typen: σ_E : Abbildung von Typen auf Typen

$$\begin{array}{rcl} \sigma_E(TV) &:= & \sigma(TV), \text{ falls } \sigma \text{ die Variable } TV \text{ abbildet} \\ \sigma_E(TV) &:= & TV, \text{ falls } \sigma \text{ die Variable } TV \text{ nicht abbildet} \\ \sigma_E(TC \ T_1 \ \dots \ T_n) &:= & TC \ \sigma_E(T_1) \ \dots \ \sigma_E(T_n) \\ \sigma_E(T_1 \to T_2) &:= & \sigma_E(T_1) \to \sigma_E(T_2) \end{array}$$

Wir unterscheiden im folgenden nicht zwischen σ und der Erweiterung $\sigma_E!$

Semantik eines polymorphen Typs

Grundtypen-Semantik für polymorphe Typen:

 $sem(\tau) := \{ \sigma(\tau) \mid \sigma(\tau) \text{ ist Grundtyp }, \sigma \text{ ist Substitution} \}$

Entspricht der Vorstellung von schematischen Typen:

Ein polymorpher Typ ist ein Schema für eine Menge von Grundtypen

Typregeln

Bekannte Regel:

$$\frac{s::T_1\to T_2,\quad t::T_1}{(s\ t)::T_2}$$

Typisierung von map not: Vor Anwendung der Regel muss der Typ von map instanziiert werden mit

$$\sigma = \{ a \mapsto Bool, b \mapsto Bool \}$$

Statt σ zu raten, kann man σ berechnen: Unifikation

Bekannte Regel:

$$\frac{s :: T_1 \to T_2, \quad t :: T_1}{(s \ t) :: T_2}$$

Problem: Man muss richtige Instanz raten, z.B.

$$\texttt{map} :: \quad \big(\texttt{a} \to \texttt{b}\big) \qquad \qquad \to \quad \big[\texttt{a}\big] \ \to \ \big[\texttt{b}\big]$$

 $\mathtt{not} :: \mathtt{Bool} \to \mathtt{Bool}$

Typisierung von map not: Vor Anwendung der Regel muss der Typ von map instanziiert werden mit

$$\sigma = \{ a \mapsto Bool, b \mapsto Bool \}$$

Statt σ zu raten, kann man σ berechnen: Unifikation

Definition

Unifikationsproblem

Ein Unifikationsproblem auf Typen ist gegeben durch eine Menge Γ von Gleichungen der Form $\tau_1 = \tau_2$, wobei τ_1 und τ_2 polymorphe Typen sind.

Eine Lösung eines Unifikationsproblem Γ auf Typen ist eine Substitution σ (bezeichnet als *Unifikator*), so dass $\sigma(\tau_1) = \sigma(\tau_2)$ für alle Gleichungen $\tau_1 = \tau_2$ des Problems.

Eine allgemeinste Lösung (allgemeinster Unifikator, mgu = most general unifier) von Γ ist ein Unifikator σ , so dass gilt: Für jeden anderen Unifikator ρ von Γ gibt es eine Substitution γ so dass $\rho(x) = \gamma \circ \sigma(x)$ für alle $x \in FV(\Gamma)$.

- Datenstruktur: $\Gamma = Multimenge von Gleichungen$
 - Multimenge ≡ "Menge" mit mehrfachem Vorkommen von Elementen
- ullet $\Gamma \cup \Gamma'$ sei die disjunkte Vereinigung von zwei Multimengen
- $\Gamma[\tau/\alpha]$ ist definiert als $\{s[\tau/\alpha] = t[\tau/\alpha] \mid (s = t) \in \Gamma\}$.

Algorithmus: Wende Schlussregeln (s.u.) solange auf Γ an, bis

- Fail auftritt, oder
- keine Regel mehr anwendbar ist

Unifikationsalgorithmus: Schlussregeln (1)

Dekomposition:

DECOMPOSE1
$$\frac{\Gamma \cup \{TC \ \tau_1 \ \dots \ \tau_n \doteq TC \ \tau'_1 \ \dots \ \tau'_n\}}{\Gamma \cup \{\tau_1 \doteq \tau'_1, \dots, \tau_n \doteq \tau'_n\}}$$
$$\frac{\Gamma \cup \{\tau_1 \Rightarrow \tau'_1, \dots, \tau_n \doteq \tau'_n\}}{\Gamma \cup \{\tau_1 \Rightarrow \tau_2 \doteq \tau'_1 \Rightarrow \tau'_2\}}$$
$$\frac{\Gamma \cup \{\tau_1 \Rightarrow \tau'_1, \tau_2 \doteq \tau'_2\}}{\Gamma \cup \{\tau_1 \doteq \tau'_1, \tau_2 \doteq \tau'_2\}}$$

Unifikationsalgorithmus: Schlussregeln (2)

Orientierung, Elimination:

Orient
$$\frac{\Gamma \cup \{\tau_1 \stackrel{.}{=} \alpha\}}{\Gamma \cup \{\alpha \stackrel{.}{=} \tau_1\}}$$

wenn τ_1 keine Typvariable und α Typvariable

$$\begin{array}{l} \operatorname{ELIM} \ \frac{\Gamma \cup \{\alpha \stackrel{.}{=} \alpha\}}{\Gamma} \\ \text{wobei} \ \alpha \ \text{Typvariable} \end{array}$$

Unifikationsalgorithmus: Schlussregeln (3)

Einsetzung, Occurs-Check:

Solve
$$\frac{\Gamma \cup \{\alpha \stackrel{.}{=} \tau\}}{\Gamma[\tau/\alpha] \cup \{\alpha \stackrel{.}{=} \tau\}}$$

wenn Typvariable α nicht in τ vorkommt, aber α kommt in Γ vor

$$\text{OccursCheck } \frac{\Gamma \cup \{\alpha \stackrel{.}{=} \tau\}}{\mathsf{Fail}}$$

wenn $\tau \neq \alpha$ und Typvariable α kommt in τ vor

Unifikationsalgorithmus: Abbruchregeln

Fail-Regeln:

$$\begin{aligned} & \text{Fail1} \frac{\Gamma \cup \{(TC_1 \ \tau_1 \ \dots \ \tau_n) \stackrel{.}{=} (TC_2 \ \tau_1' \ \dots \ \tau_m')\}}{\text{Fail}} \\ & \text{wenn} \ TC_1 \neq TC_2 \end{aligned}$$

$$& \text{Fail2} \frac{\Gamma \cup \{(TC_1 \ \tau_1 \ \dots \ \tau_n) \stackrel{.}{=} (\tau_1' \rightarrow \tau_2')\}}{\text{Fail}} \\ & \text{Fail3} \frac{\Gamma \cup \{(\tau_1' \rightarrow \tau_2') \stackrel{.}{=} (TC_1 \ \tau_1 \ \dots \ \tau_n)\}}{\text{Fail}} \end{aligned}$$

Beispiel 1:
$$\{(a \to b) \stackrel{.}{=} \mathtt{Bool} \to \mathtt{Bool}\}$$
:
$$\frac{\{(a \to b) \stackrel{.}{=} \mathtt{Bool} \to \mathtt{Bool}\}}{\{a \stackrel{.}{=} \mathtt{Bool}, b \stackrel{.}{=} \mathtt{Bool}\}}$$

Beispiel 1:
$$\{(a \rightarrow b) \stackrel{.}{=} Bool \rightarrow Bool\}$$
:

$$\begin{array}{c} \text{DECOMPOSE2} \ \frac{\left\{ (a \to b) \stackrel{.}{=} \texttt{Bool} \to \texttt{Bool} \right\}}{\left\{ a \stackrel{.}{=} \texttt{Bool}, b \stackrel{.}{=} \texttt{Bool} \right\}} \end{array}$$

Beispiel 2:
$$\{[d] \stackrel{.}{=} c, a \rightarrow [a] \stackrel{.}{=} \mathtt{Bool} \rightarrow c\}$$
:

$$\{[d] \stackrel{.}{=} c, a \rightarrow [a] \stackrel{.}{=} \mathtt{Bool} \rightarrow c\}$$

Beispiel 1:
$$\{(a \to b) \stackrel{\cdot}{=} Bool \to Bool\}$$
:

DECOMPOSE2
$$\frac{\{(a \to b) \stackrel{.}{=} \mathtt{Bool} \to \mathtt{Bool}\}}{\{a \stackrel{.}{=} \mathtt{Bool}, b \stackrel{.}{=} \mathtt{Bool}\}}$$

Beispiel 2:
$$\{[d] \stackrel{.}{=} c, a \rightarrow [a] \stackrel{.}{=} \mathsf{Bool} \rightarrow c\}$$
:

$$\text{Decompose2} \ \frac{\{[d] \stackrel{.}{=} c, a \rightarrow [a] \stackrel{.}{=} \texttt{Bool} \rightarrow c\}}{\{[d] \stackrel{.}{=} c, a \stackrel{.}{=} \texttt{Bool}, [a] \stackrel{.}{=} c\}}$$

Beispiel 1:
$$\{(a \to b) \stackrel{\cdot}{=} \mathtt{Bool} \to \mathtt{Bool}\}$$
:

$$\begin{array}{c} \text{DECOMPOSE2} \ \frac{\{(a \rightarrow b) \stackrel{.}{=} \texttt{Bool} \rightarrow \texttt{Bool}\}}{\{a \stackrel{.}{=} \texttt{Bool}, b \stackrel{.}{=} \texttt{Bool}\}} \end{array}$$

Beispiel 2:
$$\{[d] \stackrel{.}{=} c, a \rightarrow [a] \stackrel{.}{=} \mathtt{Bool} \rightarrow c\}$$
:

$$\begin{array}{c} \text{DECOMPOSE2} & \frac{\{[d] \stackrel{.}{=} c, a \rightarrow [a] \stackrel{.}{=} \texttt{Bool} \rightarrow c\}}{\{[d] \stackrel{.}{=} c, a \stackrel{.}{=} \texttt{Bool}, [a] \stackrel{.}{=} c\}}{\{[d] \stackrel{.}{=} c, a \stackrel{.}{=} \texttt{Bool}, c \stackrel{.}{=} [a]\}} \end{array}$$

Beispiel 1:
$$\{(a \to b) \stackrel{.}{=} Bool \to Bool\}$$
:

$$\begin{array}{c} \text{Decompose2} \ \frac{\{(a \rightarrow b) \stackrel{.}{=} \texttt{Bool} \rightarrow \texttt{Bool}\}}{\{a \stackrel{.}{=} \texttt{Bool}, b \stackrel{.}{=} \texttt{Bool}\}} \end{array}$$

Beispiel 2:
$$\{[d] \stackrel{.}{=} c, a \rightarrow [a] \stackrel{.}{=} \mathtt{Bool} \rightarrow c\}$$
:

$$\begin{aligned} \text{Decompose2} & \frac{\{[d] \stackrel{.}{=} c, a \rightarrow [a] \stackrel{.}{=} \texttt{Bool} \rightarrow c\}}{\{[d] \stackrel{.}{=} c, a \stackrel{.}{=} \texttt{Bool}, [a] \stackrel{.}{=} c\}}{\{[d] \stackrel{.}{=} c, a \stackrel{.}{=} \texttt{Bool}, c \stackrel{.}{=} [a]\}} \\ & \frac{\{[d] \stackrel{.}{=} c, a \stackrel{.}{=} \texttt{Bool}, c \stackrel{.}{=} [a]\}}{\{[d] \stackrel{.}{=} [a], a \stackrel{.}{=} \texttt{Bool}, c \stackrel{.}{=} [a]\}} \end{aligned}$$

Beispiel 1: $\{(a \to b) \stackrel{.}{=} Bool \to Bool\}$:

$$\begin{array}{c} \text{DECOMPOSE2} \ \frac{\left\{(a \rightarrow b) \stackrel{.}{=} \texttt{Bool} \rightarrow \texttt{Bool}\right\}}{\left\{a \stackrel{.}{=} \texttt{Bool}, b \stackrel{.}{=} \texttt{Bool}\right\}} \end{array}$$

Beispiel 2: $\{[d] \stackrel{\cdot}{=} c, a \rightarrow [a] \stackrel{\cdot}{=} \mathtt{Bool} \rightarrow c\}$:

$$\begin{aligned} & \text{Decompose2} & \frac{\{[d] \stackrel{.}{=} c, a \rightarrow [a] \stackrel{.}{=} \texttt{Bool} \rightarrow c\}}{\{[d] \stackrel{.}{=} c, a \stackrel{.}{=} \texttt{Bool}, [a] \stackrel{.}{=} c\}}{} \\ & \frac{\{[d] \stackrel{.}{=} c, a \stackrel{.}{=} \texttt{Bool}, c \stackrel{.}{=} [a]\}}{\{[d] \stackrel{.}{=} [a], a \stackrel{.}{=} \texttt{Bool}, c \stackrel{.}{=} [a]\}} \\ & \frac{\{[d] \stackrel{.}{=} [a], a \stackrel{.}{=} \texttt{Bool}, c \stackrel{.}{=} [a]\}}{\{[d] \stackrel{.}{=} [\texttt{Bool}], a \stackrel{.}{=} \texttt{Bool}, c \stackrel{.}{=} [\texttt{Bool}]\}} \end{aligned}$$

Beispiel 1:
$$\{(a \to b) \stackrel{\cdot}{=} Bool \to Bool\}$$
:

$$\begin{array}{c} \text{Decompose2} \ \frac{\{(a \rightarrow b) \stackrel{.}{=} \texttt{Bool} \rightarrow \texttt{Bool}\}}{\{a \stackrel{.}{=} \texttt{Bool}, b \stackrel{.}{=} \texttt{Bool}\}} \end{array}$$

Beispiel 2:
$$\{[d] \stackrel{.}{=} c, a \rightarrow [a] \stackrel{.}{=} \mathtt{Bool} \rightarrow c\}$$
:

$$\begin{array}{c} \text{Decompose2} \\ \text{Orient} \\ \text{Solve} \\ \text{Solve} \\ \text{Decompose1} \\ \end{array} \frac{ \{ [d] \stackrel{.}{=} c, a \stackrel{.}{=} \texttt{Bool}, [a] \stackrel{.}{=} c \} }{ \{ [d] \stackrel{.}{=} c, a \stackrel{.}{=} \texttt{Bool}, c \stackrel{.}{=} [a] \} } \\ \text{Decompose1} \\ \frac{\{ [d] \stackrel{.}{=} [a], a \stackrel{.}{=} \texttt{Bool}, c \stackrel{.}{=} [a] \} }{\{ [d] \stackrel{.}{=} [\texttt{Bool}], a \stackrel{.}{=} \texttt{Bool}, c \stackrel{.}{=} [\texttt{Bool}] \} } \\ \{ d \stackrel{.}{=} \texttt{Bool}, a \stackrel{.}{=} \texttt{Bool}, c \stackrel{.}{=} [\texttt{Bool}] \} \end{array}$$

Beispiel 1:
$$\{(a \to b) \stackrel{\cdot}{=} Bool \to Bool\}$$
:

$$\begin{array}{c} \text{Decompose2} \ \frac{\{(a \to b) \stackrel{.}{=} \texttt{Bool} \to \texttt{Bool}\}}{\{a \stackrel{.}{=} \texttt{Bool}, b \stackrel{.}{=} \texttt{Bool}\}} \end{array}$$

Beispiel 2:
$$\{[d] \stackrel{.}{=} c, a \rightarrow [a] \stackrel{.}{=} \mathtt{Bool} \rightarrow c\}$$
:

$$\begin{array}{c} \text{Decompose2} \\ \text{Orient} \\ \text{Solve} \\ \text{Solve} \\ \text{Decompose1} \\ \frac{\{[d] = c, a = \mathsf{Bool}, [a] = c\}}{\{[d] = c, a = \mathsf{Bool}, c = [a]\}} \\ \\ \text{Decompose1} \\ \frac{\{[d] = [a], a = \mathsf{Bool}, c = [a]\}}{\{[d] = [\mathsf{Bool}], a = \mathsf{Bool}, c = [\mathsf{Bool}]\}} \\ \\ \{d = \mathsf{Bool}, a = \mathsf{Bool}, c = [\mathsf{Bool}]\} \end{array}$$

Der Unifikator ist $\{d \mapsto \mathsf{Bool}, a \mapsto \mathsf{Bool}, c \mapsto [\mathsf{Bool}]\}.$

Beispiel 3:
$$\{a \stackrel{.}{=} [b], b \stackrel{.}{=} [a]\}$$

OCCURSCHECK
$$\frac{\text{Solve } \frac{\{a \stackrel{.}{=} [b], b \stackrel{.}{=} [a]\}}{\{a \stackrel{.}{=} [[a]], b \stackrel{.}{=} [a]\}}}{\text{Fail}}$$

Beispiel 3:
$$\{a = [b], b = [a]\}$$

OCCURSCHECK
$$\frac{\text{Solve }\frac{\{a \stackrel{.}{=} [b], b \stackrel{.}{=} [a]\}}{\{a \stackrel{.}{=} [[a]], b \stackrel{.}{=} [a]\}}}{\text{Fail}}$$

Beispiel 4:
$$\{a \to [b] \stackrel{.}{=} a \to c \to d\}$$

DECOMPOSE2
$$\frac{\{a \to [b] \stackrel{.}{=} a \to (c \to d)\}}{\{a \stackrel{.}{=} a, [b] \stackrel{.}{=} c \to d\}}$$
FAIL2
$$\frac{\{[b] \stackrel{.}{=} c \to d\}}{\text{Fail}}$$

- Der Algorithmus endet mit Fail gdw. es keinen Unifikator für die Eingabe gibt.
- Der Algorithmus endet erfolgreich gdw. es einen Unifikator für die Eingabe gibt. Das Gleichungssystem Γ ist dann von der Form

$$\{\alpha_1 \stackrel{\cdot}{=} \tau_1, \dots, \alpha_n \stackrel{\cdot}{=} \tau_n\},\$$

wobei α_i paarweise verschiedene Typvariablen sind und kein α_i in irgendeinem τ_i vorkommt. Der Unifikator kann dann abgelesen werden als $\sigma = \{\alpha_1 \mapsto \tau_1, \dots, \alpha_n \mapsto \tau_n\}.$

- Liefert der Algorithmus einen Unifikator, dann ist es ein allgemeinster Unifikator.
 - σ allgemeinst bedeutet: jede andere Lösung ist abgedeckt, d.h ist spezieller als σ ,
 - genauer: kann durch weitere Einsetzung aus σ erzeugt werden.

Eigenschaften des Unifikationsalgorithmus (2)

- Man braucht keine alternativen Regelanwendungen auszuprobieren! Der Algorithmus kann deterministisch implementiert werden.
- Der Algorithmus terminiert für jedes Unifikationsproblem auf Typen.

Ausgabe: Fail oder der allgemeinste Unifikator

- Die Typen in der Resultat-Substitution k\u00f6nnen exponentiell groß werden. Aber sind komprimiert polynomiell groß.
- Der Unifikationsalgorithmus kann aber so implementiert werden, dass er Zeit $O(n * \log n)$ benötigt. Man muss Sharing dazu beachten; Dazu eine andere Solve-Regel benutzen. Die Typen in der Resultat-Substitution haben danach Darstellungsgröße O(n).
- Das Unifikationsproblem (d.h. die Frage, ob eine Menge von Typgleichungen unifizierbar ist) ist P-complete. D.h. man kann im wesentlichen alle PTIME-Probleme als Unifikationsproblem darstellen:

Interpretation ist: Unifikation ist nicht effizient parallelisierbar.

Wir betrachten nun die

Typisierungsverfahren

polymorphe Typisierung

von KFPTSP+seq-Ausdrücken

Wir verschieben zunächst: Typisierung von Superkombinatoren

Wir betrachten nun die

polymorphe Typisierung

von KFPTSP+seq-Ausdrücken

Wir verschieben zunächst: Typisierung von Superkombinatoren

Nächster Schritt:

Typisierungsalgorithmus und Regeln?

Was sind die Typisierungsregeln?

$$\frac{s :: \tau_1, \quad t :: \tau_2}{(s \ t) :: \sigma(\alpha)}$$

wenn σ allgemeinster Unifikator für $\tau_1 \stackrel{.}{=} \tau_2 \rightarrow \alpha$ ist und α neue Typvariable ist.

$$\frac{s :: \tau_1, \quad t :: \tau_2}{(s \ t) :: \sigma(\alpha)}$$

wenn σ allgemeinster Unifikator für $\tau_1 \doteq \tau_2 \rightarrow \alpha$ ist und α neue Typvariable ist.

Beispiel: map not

$$\frac{\mathtt{map} :: (a \to b) \to [a] \to [b], \ \mathtt{not} :: \mathtt{Bool} \to \mathtt{Bool}}{(\mathtt{map} \ \mathtt{not}) :: \sigma(\alpha)}$$

wenn σ allgemeinster Unifikator für $(a \to b) \to [a] \to [b] \stackrel{\cdot}{=} (\mathsf{Bool} \to \mathsf{Bool}) \to \alpha \text{ ist}$ und α neue Typvariable ist.

$$\frac{s :: \tau_1, \quad t :: \tau_2}{(s \ t) :: \sigma(\alpha)}$$

wenn σ allgemeinster Unifikator für $\tau_1 \doteq \tau_2 \rightarrow \alpha$ ist und α neue Typvariable ist.

Beispiel: map not

$$\frac{\texttt{map} :: (a \to b) \to [a] \to [b], \ \texttt{not} :: \texttt{Bool} \to \texttt{Bool}}{(\texttt{map not}) :: \sigma(\alpha)}$$

wenn σ allgemeinster Unifikator für $(a \to b) \to [a] \to [b] \stackrel{\cdot}{=} (\mathsf{Bool} \to \mathsf{Bool}) \to \alpha \text{ ist}$ und α neue Typvariable ist.

Unifikation ergibt $\{a \mapsto \mathsf{Bool}, b \mapsto \mathsf{Bool}, \alpha \mapsto [\mathsf{Bool}] \to [\mathsf{Bool}]\}$

Daher: $\sigma(\alpha) = [Bool] \rightarrow [Bool]$

Beispiele rechnen: map length

Typisierung mit Bindern

Wie typisiert man eine Abstraktion $\lambda x.s$?

- Typisiere den Rumpf s
- Sei s :: τ
- Dann erhält $\lambda x.s$ einen Funktionstyp $\tau_1 \to \tau$
- Was hat τ_1 mit τ zu tun?
- τ_1 ist der Typ von x
- Wenn x im Rumpf s vorkommt, brauchen wir τ_1 bei der

Wie typisiert man eine Abstraktion $\lambda x.s$?

- Typisiere den Rumpf s
- Sei s :: τ
- Dann erhält $\lambda x.s$ einen Funktionstyp $\tau_1 \to \tau$
- Was hat τ_1 mit τ zu tun?
- τ_1 ist der Typ von x
- Wenn x im Rumpf s vorkommt, brauchen wir τ_1 bei der Berechnung von $\tau!$

Typisierung mit Bindern (2)

Informelle Regel für die Abstraktion:

Typisierung von s unter der Annahme "x hat Typ τ_1 " ergibt $s:: \tau$

$$\lambda x.s :: \tau_1 \to \tau'$$

Woher erhalten wir τ_1 ?

Typisierung mit Bindern (2)

Informelle Regel für die Abstraktion:

Typisierung von s unter der Annahme "x hat Typ τ_1 " ergibt $s:: \tau$ $\lambda x.s:: \tau_1 \to \tau'$

Woher erhalten wir τ_1 ?

Nehme allgemeinsten Typ an für x, danach schränke durch die Berechnung von τ den Typ ein.

Beispiel:

- $\lambda x.(x \text{ True})$
- Typisiere (x True) beginnend mit $x :: \alpha$
- Typisierung muss liefern $\alpha = Bool \rightarrow \alpha'$
- Typ der Abstraktion $\lambda x.(x \text{ True}) :: (Bool \to \alpha') \to \alpha'.$

Typisierung von Ausdrücken

Erweitertes Regelformat:

$$A \vdash s :: \tau, E$$

Bedeutung:

Gegeben eine Menge A von Typ-Annahmen.

der Form $s :: \tau$, wobei s Ausdruck, τ Typ ist.

Dann kann für den Ausdruck s der Typ τ und die Typgleichungen E hergeleitet werden.

- In A kommen nur Typ-Annahmen für Konstruktoren, Variablen, Superkombinatoren vor.
- In E sammeln wir Gleichungen. Diese werden später unifiziert.
- ⊢ symbolisiert den Begriff Herleitung.

Typisierung von Ausdrücken (2)

Herleitungsregeln schreiben wir in der Form

$$\frac{\mathsf{Voraussetzung}(\mathsf{en})}{\mathsf{Konsequenz}}$$

$$\frac{A_1 \vdash s_1 :: \tau_1, E_1 \qquad \dots \qquad A_k \vdash s_k :: \tau_k, E_K}{A \vdash s :: \tau, E}$$

Vereinfachung:

Konstruktoranwendungen $(c s_1 \ldots s_n)$ werden während der Typisierung wie geschachtelte Anwendungen $(((c s_1) \ldots) s_n))$ behandelt.

Typisierungsregeln für KFPTS+seq Ausdrücke (1)

Axiom für Variablen:

$$(\mathsf{AxV}) \ \overline{A \cup \{x :: \tau\} \vdash x :: \tau, \emptyset}$$

Typisierungsregeln für KFPTS+seg Ausdrücke (1)

Axiom für Variablen:

(AxV)
$$\overline{A \cup \{x :: \tau\} \vdash x :: \tau, \emptyset}$$

Axiom für Konstruktoren:

(AxK)
$$\overline{A \cup \{c :: \forall \alpha_1 \dots \alpha_n.\tau\} \vdash c :: \tau[\beta_1/\alpha_1, \dots, \beta_n/\alpha_n], \emptyset}$$
 wobei β_i neue Typvariablen sind

• Beachte: Bei jeder Typisierung des Konstruktors c wird ein mit neuen Variablen umbenannter Typ verwendet!

Typisierungsregeln für KFPTS+seg Ausdrücke (2)

Axiom für Superkombinatoren, deren Typ schon bekannt ist:

(AxSK)
$$\frac{}{A \cup \{SK :: \forall \alpha_1 \dots \alpha_n . \tau\} \vdash SK :: \tau[\beta_1/\alpha_1, \dots, \beta_n/\alpha_n], \emptyset}$$
 wobei β_i neue Typvariablen sind

• Beachte: Auch hier wird jedesmal ein mit neuen Variablen umbenannter Typ verwendet!

Typisierungsregeln für KFPTS+seq Ausdrücke (3)

Regel für Anwendungen:

$$(\text{RAPP}) \ \frac{A \vdash s :: \tau_1, E_1 \quad \text{und} \quad A \vdash t :: \tau_2, E_2}{A \vdash (s \ t) :: \alpha, E_1 \cup E_2 \cup \{\tau_1 \stackrel{.}{=} \tau_2 \rightarrow \alpha\}}$$
 wobei α neue Typvariable

Typisierungsregeln für KFPTS+seg Ausdrücke (3)

Regel für Anwendungen:

$$(\text{RAPP}) \ \frac{A \vdash s :: \tau_1, E_1 \quad \text{und} \quad A \vdash t :: \tau_2, E_2}{A \vdash (s \ t) :: \alpha, E_1 \cup E_2 \cup \{\tau_1 \stackrel{.}{=} \tau_2 \rightarrow \alpha\}}$$
 wobei α neue Typvariable

Regel für seq:

$$(\text{RSEQ}) \ \frac{A \vdash s :: \tau_1, E_1 \quad \text{und} \quad A \vdash t :: \tau_2, E_2}{A \vdash (\text{seq } s \ t) :: \tau_2, E_1 \cup E_2}$$

Regel für Abstraktionen:

$$(\text{RABS}) \ \frac{A \cup \{x :: \alpha\} \vdash s :: \tau, E}{A \vdash \lambda x.s :: \alpha \to \tau, E}$$
 wobei α eine neue Typvariable

! In dieser Regel werden die Annahmen erweitert!

Typisierungsregeln für KFPTS+seg Ausdrücke (5)

Typisierung eines case: Prinzipien

$$egin{pmatrix} \mathsf{case}_{Typ} \ s \ \mathsf{of} \ \{ & (c_1 \ x_{1,1} \ \dots \ x_{1,\mathrm{ar}(c_1)})
ightarrow t_1; \ & \dots; \ & (c_m \ x_{m,1} \ \dots \ x_{m,\mathrm{ar}(c_m)})
ightarrow t_m \} \end{pmatrix}$$

- Die Pattern und der Ausdruck s haben gleichen Typ. Der Typ muss auch zum Typindex am case passen (Haskell hat keinen Typindex an case)
- Die Ausdrücke t_1, \ldots, t_m haben gleichen Typ, und dieser Typ ist auch der Typ des ganzen case-Ausdrucks.

Typisierungsregeln für KFPTS+seg Ausdrücke (6)

RCase ist die Regel für case:

$$\begin{array}{l} A \vdash s :: \tau, E \\ \text{ für alle } i = 1, \ldots, m : \\ A \cup \{x_{i,1} :: \alpha_{i,1}, \ldots, x_{i,\operatorname{ar}(c_i)} :: \alpha_{i,\operatorname{ar}(c_i)}\} \vdash (c_i \ x_{i,1} \ \ldots \ x_{i,\operatorname{ar}(c_i)}) :: \tau_i, E_i \\ \text{ für alle } i = 1, \ldots, m : \\ A \cup \{x_{i,1} :: \alpha_{i,1}, \ldots, x_{i,\operatorname{ar}(c_i)} :: \alpha_{i,\operatorname{ar}(c_i)}\} \vdash t_i :: \tau_i', E_i' \end{array}$$

(RCase)

$$A \vdash \begin{pmatrix} \mathsf{case}_{Typ} \ s \ \mathsf{of} \ \{ \\ (c_1 \ x_{1,1} \ \dots \ x_{1,\mathrm{ar}(c_1)}) \to t_1; \\ \dots; \\ (c_m \ x_{m,1} \ \dots \ x_{m,\mathrm{ar}(c_m)}) \to t_m \} \end{pmatrix} :: \alpha, E'$$
 wobei $E' = E \cup \bigcup_{i=1}^m E_i \cup \bigcup_{i=1}^m E_i' \cup \bigcup_{i=1}^m \{\tau \doteq \tau_i\} \cup \bigcup_{i=1}^m \{\alpha \doteq \tau_i'\}$ und $\alpha_{i,j}, \alpha$ neue Typvariablen sind

M. Schmidt-Schauß

(07) Typisierung

Algorithmus:

Sei s ein geschlossener KFPTS+seq-Ausdruck, wobei die Typen für alle in s benutzten Superkombinatoren und Konstruktoren bekannt (d.h. diese Typen sind schon berechnet oder vorgegeben)

- Starte mit Anfangsannahme A, die Typen für die Konstruktoren und die Superkombinatoren enthält.
- 2 Leite $A \vdash s :: \tau, E$ mit den Typisierungsregeln her.
- Löse E mit Unifikation.
- Wenn die Unifikation mit Fail endet, ist s nicht typisierbar; Andernfalls: Sei σ ein allgemeinster Unifikator von E, dann gilt $s := \sigma(\tau)$.

Zusätzliche Regel, zum zwischendrin Unifizieren (Oder Abbrechen mit Fail):

Typberechnung:

(RUNIF)
$$\frac{A \vdash s :: \tau, E}{A \vdash s :: \sigma(\tau), E_{\sigma}}$$

wobei E_{σ} das gelöste Gleichungssystem zu E ist und σ der ablesbare Unifikator ist

Wohlgetyptheit

Definition

Ein KFPTS+seq Ausdruck s ist wohl-getypt, wenn er sich mit obigem Verfahren typisieren lässt.

(Typisierung von Superkombinatoren kommt noch) (Schwieriger!, da diese rekursiv sein können)

Nur sinnvoll 2022

EFP Evalution HEUTE

Einführung in die funktionale Programmierung Veranstaltung:

Prof. Dr. Manfred Schmidt-Schauß Lehrperson:

Evaluationstermin: 24.01.2022, 10:00 - 12:00 Uhr

http://r.sd.uni-frankfurt.de/71f9042c URL:

Typisierung von Cons True Nil

Starte mit:

$$\frac{A_0 \vdash (\mathtt{Cons\ True}) :: \tau_1, E_1, \quad A_0 \vdash \mathtt{Nil} :: \tau_2, \underline{E_2}}{A_0 \vdash (\mathtt{Cons\ True\ Nil}) :: \alpha_4, E_1 \cup E_2 \cup \{\tau_1 \stackrel{.}{=} \tau_2 \rightarrow \alpha_4\}}$$

Typisierung von Cons True Nil

Starte mit:

$$\frac{A_0 \vdash (\mathtt{Cons\ True}) :: \tau_1, E_1, \quad \overline{A_0 \vdash \mathtt{Nil} :: [\alpha_3], \emptyset}}{A_0 \vdash (\mathtt{Cons\ True\ Nil}) :: \alpha_4, E_1 \cup \emptyset \cup \{\tau_1 \stackrel{.}{=} [\alpha_3] \rightarrow \alpha_4\}}$$

Beispiele: Typisierung von (Cons True Nil)

Typisierung von Cons True Nil

Starte mit:

$$\frac{A_0 \vdash \mathsf{Cons} :: \tau_3, E_3, \quad A_0 \vdash \mathsf{True} :: \tau_4, E_4}{A_0 \vdash (\mathsf{Cons} \; \mathsf{True}) :: \alpha_2, \{\tau_3 \doteq \tau_4 \rightarrow \alpha_2\} \cup E_3 \cup E_4} \ , \qquad \frac{A_0 \vdash \mathsf{Nil} :: [\alpha_3], \emptyset}{A_0 \vdash (\mathsf{Cons} \; \mathsf{True} \; \mathsf{Nil}) :: \alpha_4, \{\tau_3 \doteq \tau_4 \rightarrow \alpha_2\} \cup E_3 \cup E_4 \cup \{\alpha_2 \doteq [\alpha_3] \rightarrow \alpha_4\}}$$

Beispiele: Typisierung von (Cons True Nil)

Typisierung von Cons True Nil

Starte mit:

$$\frac{{}^{(\text{RAPP})}}{A_0 \vdash \text{Cons True}) :: \alpha_1 \to [\alpha_1] \to [\alpha_1], \emptyset \ , \quad A_0 \vdash \text{True} :: \tau_4, E_4 \\ \frac{A_0 \vdash (\text{Cons True}) :: \alpha_2, \{\alpha_1 \to [\alpha_1] \to [\alpha_1] \doteq \tau_4 \to \alpha_2\} \cup E_4 \ , }{A_0 \vdash (\text{Cons True Nil}) :: \alpha_4, \{\alpha_1 \to [\alpha_1] \to [\alpha_1] \doteq \tau_4 \to \alpha_2\} \cup E_4 \cup \{\alpha_2 \doteq [\alpha_3] \to \alpha_4\}}$$

Typisierung von Cons True Nil

Starte mit:

$$\frac{{}^{(\text{AXK})}}{A_0 \vdash \text{Cons} :: \alpha_1 \to [\alpha_1] \to [\alpha_1], \emptyset} \xrightarrow{, \text{(AXK)}} \overline{A_0 \vdash \text{True} :: \text{Bool}, \emptyset}}{A_0 \vdash (\text{Cons True}) :: \alpha_2, \{\alpha_1 \to [\alpha_1] \to [\alpha_1] \doteq \text{Bool} \to \alpha_2\}} \xrightarrow{, \text{(AXK)}} \overline{A_0 \vdash \text{Nil} :: [\alpha_3], \emptyset}}{A_0 \vdash (\text{Cons True Nil}) :: \alpha_4, \{\alpha_1 \to [\alpha_1] \to [\alpha_1] \doteq \text{Bool} \to \alpha_2\} \cup \{\alpha_2 \doteq [\alpha_3] \to \alpha_4\}}$$

Beispiele: Typisierung von (Cons True Nil)

Typisierung von Cons True Nil

Starte mit:

$$\frac{A_0 \vdash \mathsf{Cons} :: \alpha_1 \to [\alpha_1] \to [\alpha_1], \emptyset}{A_0 \vdash \mathsf{(Cons True)} ::: \alpha_2, \{\alpha_1 \to [\alpha_1] \to [\alpha_1] \to [\alpha_1] = \mathsf{Bool} \to \alpha_2\}} \xrightarrow{\mathsf{(AxK)}} \frac{A_0 \vdash \mathsf{(Cons True)} ::: \alpha_2, \{\alpha_1 \to [\alpha_1] \to [\alpha_1] = \mathsf{Bool} \to \alpha_2\}}{A_0 \vdash \mathsf{(Cons True Nil)} ::: \alpha_4, \{\alpha_1 \to [\alpha_1] \to [\alpha_1] = \mathsf{Bool} \to \alpha_2, \alpha_2 = [\alpha_3] \to \alpha_4\}}$$

Typisierung von Cons True Nil

Starte mit:

Anfangsannahme: $A_0 = \{ \mathtt{Cons} :: \forall a.a \rightarrow [a] \rightarrow [a], \mathtt{Nil} :: \forall a.[a], \mathtt{True} :: \mathtt{Bool} \}$ α : Variablen; τ : Typen und E Gleichungsmengen, die berechnet werden.

$$\frac{A^{(AXK)}}{A_0 \vdash \mathsf{Cons} :: \alpha_1 \to [\alpha_1] \to [\alpha_1], \emptyset} \xrightarrow{A_0 \vdash \mathsf{True} :: \mathsf{Bool}, \emptyset} \frac{A_0 \vdash \mathsf{Cons} :: \alpha_1 \to [\alpha_1] \to [\alpha_1], \emptyset}{A_0 \vdash (\mathsf{Cons} \; \mathsf{True}) :: \alpha_2, \{\alpha_1 \to [\alpha_1] \to [\alpha_1] = \mathsf{Bool} \to \alpha_2\}} \xrightarrow{(\mathsf{AXK})} \frac{A_0 \vdash \mathsf{Nil} :: [\alpha_3], \emptyset}{A_0 \vdash (\mathsf{Cons} \; \mathsf{True} \; \mathsf{Nil}) :: \alpha_4, \{\alpha_1 \to [\alpha_1] \to [\alpha_1] = \mathsf{Bool} \to \alpha_2, \alpha_2 = [\alpha_3] \to \alpha_4\}}$$

Löse $\{\alpha_1 \to [\alpha_1] \to [\alpha_1] = \text{Bool} \to \alpha_2, \alpha_2 = [\alpha_3] \to \alpha_4\}$ mit Unifikation

Beispiele: Typisierung von (Cons True Nil)

Typisierung von Cons True Nil

Starte mit:

$$\frac{{}^{(\text{RAPP})}}{(\text{RAPP})} \frac{\overline{A_0 \vdash \text{Cons} :: \alpha_1 \to [\alpha_1] \to [\alpha_1], \emptyset}}{A_0 \vdash (\text{Cons True}) :: \alpha_2, \{\alpha_1 \to [\alpha_1] \to [\alpha_1] \to \text{Bool} \to \alpha_2\}} \xrightarrow{\text{(AXK)}} \frac{\overline{A_0 \vdash \text{Nil} :: [\alpha_3], \emptyset}}{\overline{A_0 \vdash \text{Nil} :: [\alpha_3], \emptyset}} \\ \frac{A_0 \vdash (\text{Cons True}) :: \alpha_2, \{\alpha_1 \to [\alpha_1] \to [\alpha_1] \to \text{Bool} \to \alpha_2\}}{A_0 \vdash (\text{Cons True Nil}) :: \alpha_4, \{\alpha_1 \to [\alpha_1] \to [\alpha_1] \to \text{Bool} \to \alpha_2, \alpha_2 \doteq [\alpha_3] \to \alpha_4\}}$$

$$\begin{split} \text{L\"{o}se } & \{\alpha_1 \to [\alpha_1] \to [\alpha_1] \stackrel{.}{=} \texttt{Bool} \to \alpha_2, \alpha_2 \stackrel{.}{=} [\alpha_3] \to \alpha_4 \} \text{ mit Unifikation} \\ & \texttt{Ergibt: } \sigma = \{\alpha_1 \mapsto \texttt{Bool}, \alpha_2 \mapsto ([\texttt{Bool}] \to [\texttt{Bool}]), \alpha_3 \mapsto \texttt{Bool}, \alpha_4 \mapsto [\texttt{Bool}] \} \end{split}$$

Typisierung von Cons True Nil

Starte mit:

Anfangsannahme: $A_0 = \{ \mathtt{Cons} :: \forall a.a \rightarrow [a] \rightarrow [a], \mathtt{Nil} :: \forall a.[a], \mathtt{True} :: \mathtt{Bool} \}$ α : Variablen; τ : Typen und E Gleichungsmengen, die berechnet werden.

$$\frac{{}^{(\text{AXK})}}{(\text{RAPP})} \frac{\overline{A_0 \vdash \text{Cons} :: \alpha_1 \rightarrow [\alpha_1] \rightarrow [\alpha_1], \emptyset} \ , {}^{(\text{AXK})} \ \overline{A_0 \vdash \text{True} :: \text{Bool}, \emptyset}}{A_0 \vdash (\text{Cons True}) :: \alpha_2, \{\alpha_1 \rightarrow [\alpha_1] \rightarrow [\alpha_1] = \text{Bool} \rightarrow \alpha_2\}} \ , {}^{(\text{AXK})} \ \overline{A_0 \vdash \text{Nil} :: [\alpha_3], \emptyset}}{\overline{A_0 \vdash (\text{Cons True Nil}) :: \alpha_4, \{\alpha_1 \rightarrow [\alpha_1] \rightarrow [\alpha_1] = \text{Bool} \rightarrow \alpha_2, \alpha_2 = [\alpha_3] \rightarrow \alpha_4\}}}$$

$$\begin{split} & \text{L\"ose } \{\alpha_1 \to [\alpha_1] \to [\alpha_1] \stackrel{.}{=} \text{Bool} \to \alpha_2, \alpha_2 \stackrel{.}{=} [\alpha_3] \to \alpha_4 \} \text{ mit Unifikation} \\ & \text{Ergibt: } \sigma = \{\alpha_1 \mapsto \text{Bool}, \alpha_2 \mapsto ([\text{Bool}] \to [\text{Bool}]), \alpha_3 \mapsto \text{Bool}, \alpha_4 \mapsto [\text{Bool}] \} \end{split}$$

Daher (Cons True Nil) :: $\sigma(\alpha_4) = [Bool]$

Beispiele: Typisierung von $\lambda x.x$

Typisierung von $\lambda x.x$

$$\frac{A_0 \cup \{x :: \alpha\} \vdash x :: \tau, E}{A_0 \vdash (\lambda x. x) :: \alpha \to \tau, E}$$

Typisierung von $\lambda x.x$

$$\frac{A_0 \cup \{x :: \alpha\} \vdash x :: \alpha, \emptyset}{A_0 \vdash (\lambda x .: \alpha) :: \alpha \to \alpha, \emptyset}$$

Beispiele: Typisierung von $\lambda x.x$

Typisierung von $\lambda x.x$

Starte mit: Anfangsannahme: $A_0 = \emptyset$

$$\frac{A_0 \cup \{x :: \alpha\} \vdash x :: \alpha, \emptyset}{A_0 \vdash (\lambda x .: x) :: \alpha \to \alpha, \emptyset}$$

Nichts zu unifizieren, daher $(\lambda x.x) :: \alpha \to \alpha$

Typisierung von $(\lambda x.(x \ x)) \ (\lambda y.(y \ y))$

$$\frac{\emptyset \vdash (\lambda x.(x\ x)) :: \tau_1, E_1, \quad \emptyset \vdash (\lambda y.(y\ y)) :: \tau_2, E_2}{\emptyset \vdash (\lambda x.(x\ x))\ (\lambda y.(y\ y)) :: \alpha_1, E_1 \cup E_2 \cup \{\tau_1 \stackrel{.}{=} \tau_2 \rightarrow \alpha_1\}}$$

Typisierung von $(\lambda x.(x \ x)) \ (\lambda y.(y \ y))$

$$_{\text{(RAPP)}} \frac{\{x :: \alpha_2\} \vdash (x \ x) :: \tau_6, E_1}{\emptyset \vdash (\lambda x.(x \ x)) :: \alpha_2 \rightarrow \tau_6, E_1} \ , \quad \emptyset \vdash (\lambda y.(y \ y)) :: \tau_2, E_2}{\emptyset \vdash (\lambda x.(x \ x)) \ (\lambda y.(y \ y)) :: \alpha_1, E_1 \cup E_2 \cup \{\alpha_2 \rightarrow \tau_6 \stackrel{.}{=} \tau_2 \rightarrow \alpha_1\}}$$

Typisierung von $(\lambda x.(x \ x)) \ (\lambda y.(y \ y))$

$$(\text{RAPP}) \frac{\{x :: \alpha_2\} \vdash x :: \tau_3, E_3, \ \{x :: \alpha_2\} \vdash x :: \tau_4, E_4, \\ \{x :: \alpha_2\} \vdash (x \ x) :: \alpha_3, \{\tau_3 = \tau_4 \rightarrow \alpha_3\} \cup E_3 \cup E_4 \\ \hline{\emptyset \vdash (\lambda x.(x \ x)) :: \alpha_2 \rightarrow \alpha_3, \{\tau_3 = \tau_4 \rightarrow \alpha_3\} \cup E_3 \cup E_4 \ , \ \emptyset \vdash (\lambda y.(y \ y)) :: \tau_2, E_2 \\ \hline{\emptyset \vdash (\lambda x.(x \ x)) \ (\lambda y.(y \ y)) :: \alpha_1, \{\tau_3 = \tau_4 \rightarrow \alpha_3\} \cup E_3 \cup E_4 \cup E_2 \cup \{\alpha_2 \rightarrow \alpha_3 = \tau_2 \rightarrow \alpha_1\} \\ \hline}$$

Typisierung von $(\lambda x.(x \ x)) \ (\lambda y.(y \ y))$

$$(RAPP) \xrightarrow{(RAPP)} \frac{\overline{\{x :: \alpha_2\} \vdash x :: \alpha_2, \emptyset}, \{x :: \alpha_2\} \vdash x :: \tau_4, E_4,}{\overline{\{x :: \alpha_2\} \vdash (x : x) :: \alpha_3, \{\alpha_2 \doteq \tau_4 \rightarrow \alpha_3\} \cup E_4}} \\ \frac{(RAPP)}{\emptyset \vdash (\lambda x.(x : x)) :: \alpha_2 \rightarrow \alpha_3, \{\alpha_2 \doteq \tau_4 \rightarrow \alpha_3\} \cup E_4}, \emptyset \vdash (\lambda y.(y : y)) :: \tau_2, E_2}{\emptyset \vdash (\lambda x.(x : x)) (\lambda y.(y : y)) :: \alpha_1, \{\alpha_2 \doteq \tau_4 \rightarrow \alpha_3\} \cup E_4 \cup E_2 \cup \{\alpha_2 \rightarrow \alpha_3 \doteq \tau_2 \rightarrow \alpha_1\}}$$

Typisierung von $(\lambda x.(x \ x)) \ (\lambda y.(y \ y))$

$$\frac{(\text{RAPP})}{(\text{RAPP})} \frac{\overline{\{x :: \alpha_2\} \vdash x :: \alpha_2, \emptyset} \ , \stackrel{(\text{AVV})}{\overline{\{x :: \alpha_2\} \vdash x :: \alpha_2, \emptyset}} \ ,}{\underline{\{x :: \alpha_2\} \vdash (x \ x) :: \alpha_3, \{\alpha_2 = \alpha_2 \to \alpha_3\}}} \\ \frac{\{x :: \alpha_2\} \vdash (x \ x) :: \alpha_3, \{\alpha_2 = \alpha_2 \to \alpha_3\}}{\emptyset \vdash (\lambda x.(x \ x)) :: \alpha_2 \to \alpha_3, \{\alpha_2 = \alpha_2 \to \alpha_3\}} \ , \ \emptyset \vdash (\lambda y.(y \ y)) :: \tau_2, \underline{E_2}}{\emptyset \vdash (\lambda x.(x \ x)) \ (\lambda y.(y \ y)) :: \alpha_1, \{\alpha_2 = \alpha_2 \to \alpha_3\} \cup \underline{E_2} \cup \{\alpha_2 \to \alpha_3 = \tau_2 \to \alpha_1\}}$$

Typisierung von $(\lambda x.(x \ x)) \ (\lambda y.(y \ y))$

$$\frac{(\text{RAPP})}{(\text{RAPP})} \frac{\overline{\{x :: \alpha_2\} \vdash x :: \alpha_2, \emptyset} \ ,^{(\text{AXV})} \ \overline{\{x :: \alpha_2\} \vdash x :: \alpha_2, \emptyset} \ ,}{\underline{\{x :: \alpha_2\} \vdash (x \ x) :: \alpha_3, \{\alpha_2 = \alpha_2 \rightarrow \alpha_3\}} \ } \frac{1}{\emptyset \vdash (\lambda x.(x \ x)) :: \alpha_2 \rightarrow \alpha_3, \{\alpha_2 = \alpha_2 \rightarrow \alpha_3\}} \frac{1}{\emptyset \vdash (\lambda y.(y \ y)) :: \tau_2, E_2} \frac{1}{\emptyset \vdash (\lambda x.(x \ x)) \ (\lambda y.(y \ y)) :: \alpha_1, \{\alpha_2 = \alpha_2 \rightarrow \alpha_3\} \cup E_2 \cup \{\alpha_2 \rightarrow \alpha_3 = \tau_2 \rightarrow \alpha_1\}}$$

Typisierung von $(\lambda x.(x \ x)) \ (\lambda y.(y \ y))$

Starte mit: Anfangsannahme: $A_0 = \emptyset$

$$\frac{(\text{RAPP})}{(\text{RAPP})} \frac{\overline{\{x :: \alpha_2\} \vdash x :: \alpha_2, \emptyset} \ , \stackrel{(\text{AXV})}{\overline{\{x :: \alpha_2\}} \vdash x :: \alpha_2, \emptyset} \ ,}{\underline{\{x :: \alpha_2\} \vdash (x \ x) :: \alpha_3, \{\alpha_2 \doteq \alpha_2 \rightarrow \alpha_3\}} \ } \frac{1}{\emptyset \vdash (\lambda x.(x \ x)) :: \alpha_2 \rightarrow \alpha_3, \{\alpha_2 \doteq \alpha_2 \rightarrow \alpha_3\}} \frac{1}{\emptyset \vdash (\lambda y.(y \ y)) :: \tau_2, E_2}$$

$$\frac{(\text{RAPP})}{\emptyset \vdash (\lambda x.(x \ x)) \ (\lambda y.(y \ y)) :: \alpha_1, \{\alpha_2 \doteq \alpha_2 \rightarrow \alpha_3\} \cup E_2 \cup \{\alpha_2 \rightarrow \alpha_3 \doteq \tau_2 \rightarrow \alpha_1\}}$$

Man sieht schon:

Die Unifikation schlägt fehl, wegen: $\alpha_2 = \alpha_2 \rightarrow \alpha_3$

Daher: $(\lambda x.(x \ x)) \ (\lambda y.(y \ y))$ ist nicht typisierbar!

Beachte: $(\lambda x.(x \ x)) \ (\lambda y.(y \ y))$ ist nicht dynamisch ungetypt aber nicht wohl-getypt

Annahme:

map und length sind bereits typisierte Superkombinatoren.

Wir typisieren:

$$t := \lambda x s. \mathtt{case_{List}} \ x s \ \mathtt{of} \ \{ \mathtt{Nil} \to \mathtt{Nil}; (\mathtt{Cons} \ y \ y s) \to \mathtt{map} \ \mathtt{length} \ y s \}$$

Als Anfangsannahme benutzen wir:

$$\begin{split} A_0 &= \{ \texttt{map} :: \forall a, b. (a \to b) \to [a] \to [b], \\ \texttt{length} :: \forall a. [a] \to \texttt{Int}, \\ \texttt{Nil} :: \forall a. [a] \\ \texttt{Cons} :: \forall a. a \to [a] \to [a] \\ \} \end{split}$$

Beispiele: Typisierung eines Ausdrucks mit SKs (2)

Herleitungsbaum:

$$\underbrace{\frac{(\text{AXV})}{(\text{RAPP})}}_{\text{(RCASE)}} \underbrace{\frac{B_{3}}{B_{4}}, \overset{(\text{AXV})}{B_{5}}}_{\text{(RAPP)}} \underbrace{\frac{B_{6}}{B_{6}}, \overset{(\text{AXV})}{B_{7}}}_{\text{(AXV)}} \underbrace{\frac{(\text{AXV})}{B_{7}}}_{\text{(AXK)}} \underbrace{\frac{(\text{AXSK})}{B_{10}}, \overset{B_{14}}{B_{14}}, \overset{(\text{AXSK})}{B_{15}}}_{\text{(RAPP)}} \underbrace{\frac{(\text{AXV})}{B_{12}}}_{\text{(RAPP)}} \underbrace{\frac{B_{12}}{B_{12}}, \overset{(\text{AXV})}{B_{13}}}_{\text{(RAV)}} \underbrace{\frac{B_{13}}{B_{12}}, \overset{(\text{AXV})}{B_{13}}}_{\text{(RAPP)}} \underbrace{\frac{B_{14}}{B_{12}}, \overset{(\text{AXSK})}{B_{15}}}_{\text{(AXV)}} \underbrace{\frac{B_{15}}{B_{12}}, \overset{(\text{AXV})}{B_{13}}}_{\text{(RAV)}} \underbrace{\frac{B_{15}}{B_{12}}, \overset{(\text{AXV})}{B_{13}}}_{\text{(RAPP)}} \underbrace{\frac{B_{14}}{B_{12}}, \overset{(\text{AXV})}{B_{13}}}_{\text{(AXV)}} \underbrace{\frac{B_{15}}{B_{12}}, \overset{(\text{AXV})}{B_{13}}}_{\text{(RAPP)}} \underbrace{\frac{B_{15}}{B_{12}}, \overset{(\text{AXV})}{B_{13}}}_{\text{(RAPP)}} \underbrace{\frac{B_{15}}{B_{12}}, \overset{(\text{AXV})}{B_{13}}}_{\text{(RAPP)}} \underbrace{\frac{B_{15}}{B_{12}}, \overset{(\text{AXV})}{B_{13}}}_{\text{(RAPP)}} \underbrace{\frac{B_{15}}{B_{12}}, \overset{(\text{AXV})}{B_{13}}}_{\text{(RAPP)}} \underbrace{\frac{B_{15}}{B_{13}}, \overset{(\text{AXV})}{B_{13}}}_{\text{(RAPP)}} \underbrace{\frac{B_{15}}{B_{13}}, \overset{(\text{AXV})}{B_{13}}}_{\text{(RAPP)}} \underbrace{\frac{B_{15}}{B_{13}}, \overset{(\text{AXV})}{B_{13}}}_{\text{(RAPP)}} \underbrace{\frac{B_{15}}{B_{13}}, \overset{(\text{AXV})}{B_{13}}}_{\text{(RAPP)}} \underbrace{\frac{B_{15}}{B_{13}}, \overset{(\text{AXV})}{B_{13}}, \overset{(\text{AXV})}{B_{13}}}_{\text{(RAPP)}} \underbrace{\frac{B_{15}}{B_{13}}, \overset{(\text{AXV})}{B_{13}}, \overset{(\text{AXV})}{B_{$$

Beschriftungen:

$$\begin{array}{lll} B_1 &=& A_0 \vdash t :: \alpha_1 \to \alpha_{13}, \\ && \{\alpha_5 \to [\alpha_5] \to [\alpha_5] = \alpha_3 \to \alpha_6, \alpha_6 = \alpha_4 \to \alpha_7, \\ && (\alpha_8 \to \alpha_9) \to [\alpha_8] \to [\alpha_9] = ([\alpha_{10}] \to \operatorname{Int}) \to \alpha_{11}, \alpha_{11} = \alpha_4 \to \alpha_{12}, \\ && \alpha_1 = [\alpha_2], \alpha_1 = \alpha_7, \alpha_{13} = [\alpha_{14}], \alpha_{13} = \alpha_{12}, \} \\ B_2 &=& A_0 \cup \{xs :: \alpha_1\} \vdash \\ && \operatorname{case}_{\operatorname{List}} xs \text{ of } \{\operatorname{Nil} \to \operatorname{Nil}; (\operatorname{Cons} y \ ys) \to \operatorname{map length} ys\} :: \alpha_{13}, \\ && \{\alpha_5 \to [\alpha_5] \to [\alpha_5] = \alpha_3 \to \alpha_6, \alpha_6 = \alpha_4 \to \alpha_7, \\ && (\alpha_8 \to \alpha_9) \to [\alpha_8] \to [\alpha_9] = ([\alpha_{10}] \to \operatorname{Int}) \to \alpha_{11}, \alpha_{11} = \alpha_4 \to \alpha_{12}, \\ && \alpha_1 = [\alpha_2], \alpha_1 = \alpha_7, \alpha_{13} = [\alpha_{14}], \alpha_{13} = \alpha_{12}, \} \end{array}$$

Herleitungsbaum:

$$\underbrace{\frac{\text{(AXV)}}{\text{(RAABS)}}}_{\text{(RAABS)}} \underbrace{\frac{B_{3}}{B_{4}}, \frac{\text{(AXV)}}{B_{4}}, \frac{B_{8}}{B_{6}}, \frac{\text{(AXV)}}{B_{9}}}_{\text{(AXV)}} \underbrace{\frac{B_{7}}{B_{7}}, \frac{\text{(AXK)}}{B_{10}}, \frac{B_{14}}{B_{10}}, \frac{\text{(AXSK)}}{B_{15}}}_{\text{(RAPP)}} \underbrace{\frac{B_{14}}{B_{12}}, \frac{\text{(AXV)}}{B_{13}}}_{\text{(AXV)}} \underbrace{\frac{B_{13}}{B_{13}}}_{\text{(AXV)}} \underbrace{\frac{B_{14}}{B_{10}}, \frac{\text{(AXSK)}}{B_{10}}, \frac{B_{15}}{B_{10}}}_{\text{(AXV)}} \underbrace{\frac{B_{15}}{B_{10}}, \frac{B_{15}}{B_{10}}}_{\text{(AXV)}} \underbrace{\frac{B_{15}}{B_{10}}, \frac{B_{15}}{B_{10}}}_{\text{(AXV)}} \underbrace{\frac{B_{15}}{B_{10}}, \frac{B_{15}}{B_{10}}}_{\text{(AXV)}} \underbrace{\frac{B_{15}}{B_{10}}, \frac{B_{15}}{B_{10}}}_{\text{(AXV)}} \underbrace{\frac{B_{15}}{B_{10}}, \frac{B_{15}}{B_{10}}}_{\text{(AXV)}} \underbrace{\frac{B_{15}}{B_{10}}, \frac{B_{15}}{B_{10}}, \frac{B_{15}}{B_{10}}}_{\text{(AXV)}} \underbrace{\frac{B_{15}}{B_{10}}, \frac{B_{15}}{B_{10}}, \frac{B_{15}}{B_{10}}}_{\text{(AXV)}} \underbrace{\frac{B_{15}}{B_{10}}, \frac{B_{15}}{B_{10}}, \frac{B_{15}}{B_{1$$

Beschriftungen:

$$\begin{array}{lll} B_3 = & A_0 \cup \{xs :: \alpha_1\} \vdash \ xs :: \alpha_1, \emptyset \\ B_4 = & A_0 \cup \{xs :: \alpha_1\} \vdash \operatorname{Nil} :: [\alpha_2], \emptyset \\ B_5 = & A_0 \cup \{xs :: \alpha_1, y :: \alpha_3, ys :: \alpha_4\} \vdash (\operatorname{Cons} y \ ys) :: \alpha_7, \\ & \{\alpha_5 \to [\alpha_5] \to [\alpha_5] \doteq \alpha_3 \to \alpha_6, \alpha_6 \doteq \alpha_4 \to \alpha_7\} \\ B_6 = & A_0 \cup \{xs :: \alpha_1, y :: \alpha_3, ys :: \alpha_4\} \vdash (\operatorname{Cons} y) :: \alpha_6, \\ & \{\alpha_5 \to [\alpha_5] \to [\alpha_5] \doteq \alpha_3 \to \alpha_6\} \\ B_7 = & A_0 \cup \{xs :: \alpha_1, y :: \alpha_3, ys :: \alpha_4\} \vdash ys :: \alpha_4, \emptyset \\ B_8 = & A_0 \cup \{xs :: \alpha_1, y :: \alpha_3, ys :: \alpha_4\} \vdash \operatorname{Cons} :: \alpha_5 \to [\alpha_5] \to [\alpha_5], \emptyset \\ B_9 = & A_0 \cup \{xs :: \alpha_1, y :: \alpha_3, ys :: \alpha_4\} \vdash y :: \alpha_3, \emptyset \\ B_{10} = & A_0 \cup \{xs :: \alpha_1\} \vdash \operatorname{Nil} :: [\alpha_{14}], \emptyset \end{array}$$

Herleitungsbaum:

$$(AXV) = \frac{B_{3}}{B_{3}}, (AXK) = \frac{B_{4}}{B_{4}}, (AXV) = \frac{B_{8}}{B_{6}}, (AXV) = \frac{B_{7}}{B_{7}}, (AXV) = \frac{B_{10}}{B_{10}}, (AXK) = \frac{B_{10}}{B_{10}}, (AXK) = \frac{B_{10}}{B_{10}}, (AXK) = \frac{B_{10}}{B_{10}}, (AXV) = \frac{B_{10}}{B_{10}},$$

Beschriftungen:

$$\begin{array}{lll} B_{11} = & A_0 \cup \{xs :: \alpha_1, y :: \alpha_3, ys :: \alpha_4\} \vdash (\mathtt{map \ length}) \ ys :: \alpha_{12}, \\ & \{(\alpha_8 \to \alpha_9) \to [\alpha_8] \to [\alpha_9] \stackrel{.}{=} ([\alpha_{10}] \to \mathtt{Int}) \to \alpha_{11}, \alpha_{11} \stackrel{.}{=} \alpha_4 \to \alpha_{12}\} \\ B_{12} = & A_0 \cup \{xs :: \alpha_1, y :: \alpha_3, ys :: \alpha_4\} \vdash (\mathtt{map \ length}) :: \alpha_{11}, \\ & \{(\alpha_8 \to \alpha_9) \to [\alpha_8] \to [\alpha_9] \stackrel{.}{=} ([\alpha_{10}] \to \mathtt{Int}) \to \alpha_{11}\} \\ B_{13} = & A_0 \cup \{xs :: \alpha_1, y :: \alpha_3, ys :: \alpha_4\} \vdash ys :: \alpha_4, \emptyset \\ B_{14} = & A_0 \cup \{xs :: \alpha_1, y :: \alpha_3, ys :: \alpha_4\} \vdash \mathtt{map} :: (\alpha_8 \to \alpha_9) \to [\alpha_8] \to [\alpha_9], \emptyset \\ B_{15} = & A_0 \cup \{xs :: \alpha_1, y :: \alpha_3, ys :: \alpha_4\} \vdash \mathtt{length} :: [\alpha_{10}] \to \mathtt{Int}, \emptyset \end{array}$$

Beispiele: Typisierung eines Ausdrucks mit SKs (5)

Beschriftung unten:

$$\begin{split} B_1 = \quad A_0 \vdash t &:: \alpha_1 \to \alpha_{13}, \\ \left\{\alpha_5 \to [\alpha_5] \to [\alpha_5] \doteq \alpha_3 \to \alpha_6, \alpha_6 \doteq \alpha_4 \to \alpha_7, \\ \left(\alpha_8 \to \alpha_9\right) \to [\alpha_8] \to [\alpha_9] \doteq ([\alpha_{10}] \to \mathtt{Int}) \to \alpha_{11}, \alpha_{11} \doteq \alpha_4 \to \alpha_{12}, \\ \alpha_1 \doteq [\alpha_2], \alpha_1 = \alpha_7, \alpha_{13} \doteq [\alpha_{14}], \alpha_{13} = \alpha_{12}, \end{split}$$

Beispiele: Typisierung eines Ausdrucks mit SKs (5)

Beschriftung unten:

$$\begin{split} B_1 = \quad A_0 \vdash t :: \alpha_1 \to \alpha_{13}, \\ \left\{\alpha_5 \to [\alpha_5] \to [\alpha_5] \stackrel{.}{=} \alpha_3 \to \alpha_6, \alpha_6 \stackrel{.}{=} \alpha_4 \to \alpha_7, \\ \left(\alpha_8 \to \alpha_9\right) \to [\alpha_8] \to [\alpha_9] \stackrel{.}{=} ([\alpha_{10}] \to \mathtt{Int}) \to \alpha_{11}, \alpha_{11} \stackrel{.}{=} \alpha_4 \to \alpha_{12}, \\ \alpha_1 \stackrel{.}{=} [\alpha_2], \alpha_1 = \alpha_7, \alpha_{13} \stackrel{.}{=} [\alpha_{14}], \alpha_{13} = \alpha_{12}, \end{split}$$

Löse mit Unifikation:

$$\begin{split} &\{\alpha_5 \rightarrow [\alpha_5] \rightarrow [\alpha_5] \stackrel{.}{=} \alpha_3 \rightarrow \alpha_6, \alpha_6 \stackrel{.}{=} \alpha_4 \rightarrow \alpha_7, \\ &(\alpha_8 \rightarrow \alpha_9) \rightarrow [\alpha_8] \rightarrow [\alpha_9] \stackrel{.}{=} ([\alpha_{10}] \rightarrow \text{Int}) \rightarrow \alpha_{11}, \alpha_{11} \stackrel{.}{=} \alpha_4 \rightarrow \alpha_{12}, \\ &\alpha_1 \stackrel{.}{=} [\alpha_2], \alpha_1 = \alpha_7, \alpha_{13} \stackrel{.}{=} [\alpha_{14}], \alpha_{13} = \alpha_{12} \} \end{split}$$

Beispiele: Typisierung eines Ausdrucks mit SKs (5)

Beschriftung unten:

$$\begin{split} B_1 = \quad A_0 \vdash t :: \alpha_1 \to \alpha_{13}, \\ \left\{\alpha_5 \to [\alpha_5] \to [\alpha_5] \stackrel{.}{=} \alpha_3 \to \alpha_6, \alpha_6 \stackrel{.}{=} \alpha_4 \to \alpha_7, \\ \left(\alpha_8 \to \alpha_9\right) \to [\alpha_8] \to [\alpha_9] \stackrel{.}{=} ([\alpha_{10}] \to \mathtt{Int}) \to \alpha_{11}, \alpha_{11} \stackrel{.}{=} \alpha_4 \to \alpha_{12}, \\ \alpha_1 \stackrel{.}{=} [\alpha_2], \alpha_1 = \alpha_7, \alpha_{13} \stackrel{.}{=} [\alpha_{14}], \alpha_{13} = \alpha_{12}, \end{split}$$

Löse mit Unifikation:

$$\begin{aligned} &\{\alpha_5 \rightarrow [\alpha_5] \rightarrow [\alpha_5] \doteq \alpha_3 \rightarrow \alpha_6, \alpha_6 \doteq \alpha_4 \rightarrow \alpha_7, \\ &(\alpha_8 \rightarrow \alpha_9) \rightarrow [\alpha_8] \rightarrow [\alpha_9] \doteq ([\alpha_{10}] \rightarrow \text{Int}) \rightarrow \alpha_{11}, \alpha_{11} \doteq \alpha_4 \rightarrow \alpha_{12}, \\ &\alpha_1 \doteq [\alpha_2], \alpha_1 = \alpha_7, \alpha_{13} \doteq [\alpha_{14}], \alpha_{13} = \alpha_{12} \end{aligned}$$

Ergibt:

$$\begin{array}{lll} \sigma & = & \{\alpha_1 \mapsto [[\alpha_{10}]], \alpha_2 \mapsto [\alpha_{10}], \alpha_3 \mapsto [\alpha_{10}], \alpha_4 \mapsto [[\alpha_{10}]], \alpha_5 \mapsto [\alpha_{10}], \\ & \alpha_6 \mapsto [[\alpha_{10}]] \to [[\alpha_{10}]], \alpha_7 \mapsto [[\alpha_{10}]], \alpha_8 \mapsto [\alpha_{10}], \alpha_9 \mapsto \mathtt{Int}, \\ & \alpha_{11} \mapsto [[\alpha_{10}]] \to [\mathtt{Int}], \alpha_{12} \mapsto [\mathtt{Int}], \alpha_{13} \mapsto [\mathtt{Int}], \alpha_{14} \mapsto \mathtt{Int}\} \end{array}$$

Damit erhält man $t :: \sigma(\alpha_1 \to \alpha_{13}) = [[\alpha_{10}]] \to [\mathtt{Int}].$ zur Erinnerung:

 $t := \lambda x s. \mathtt{case}_{\mathtt{List}} \ x s \ \mathtt{of} \ \{ \mathtt{Nil} \to \mathtt{Nil}; (\mathtt{Cons} \ y \ y s) \to \mathtt{map} \ \mathtt{length} \ y s \}$

Bsp.: Typisierung von Lambda-geb. Variablen (1)

Die Funktion const ist definiert als

```
const :: a -> b -> a
const x y = x
```

Typisierung von $\lambda x.$ const (x True) (x 'A')

Zum Beispiel: nach Einsetzen von x = Id wäre der Ausdruck getypt.

Anfangsannahme:

$$A_0 = \{ \texttt{const} :: \forall a, b.a \rightarrow b \rightarrow a, \texttt{True} :: \texttt{Bool}, \texttt{`A'} :: \texttt{Char} \}.$$

Bsp.: Typisierung von Lambda-geb. Variablen (2)

$$\frac{(\text{\tiny (AXK)})}{A_1 \vdash \text{\tiny (CRAPP)}} \overline{A_1 \vdash x :: \alpha_1} \xrightarrow{(\text{\tiny (AXK)})} \overline{A_1 \vdash \text{\tiny True} :: \text{Bool}} \\ A_1 \vdash \text{\tiny (CRAPP)}} \xrightarrow{(\text{\tiny (RAPP)})} \overline{A_1 \vdash (x \text{\tiny True}) :: \alpha_4, E_1} \xrightarrow{(\text{\tiny (RAPP)})} \overline{A_1 \vdash x :: \alpha_1} \xrightarrow{(\text{\tiny (RAPP)})} \overline{A_1 \vdash x :: \alpha_1} \xrightarrow{(\text{\tiny (AXK)})} \overline{A_1 \vdash x :: \alpha_1} \xrightarrow{(\text{\tiny (RAPP)})} \overline{A_1 \vdash x :: \alpha_1} \xrightarrow{(\text{\tiny (RAPP)})}$$

$$A_0 \vdash \lambda x.\mathtt{const} \ (x \ \mathtt{True}) \ (x \ \mathtt{`A'}) :: \alpha_1 \to \alpha_7, E_4$$

wobei $A_1 = A_0 \cup \{x :: \alpha_1\}$ und:

$$\begin{array}{lll} E_1 &=& \{\alpha_1 \stackrel{.}{=} \operatorname{Bool} \rightarrow \alpha_4\} \\ E_2 &=& \{\alpha_1 \stackrel{.}{=} \operatorname{Bool} \rightarrow \alpha_4, \alpha_2 \rightarrow \alpha_3 \rightarrow \alpha_2 \stackrel{.}{=} \alpha_4 \rightarrow \alpha_5\} \\ E_3 &=& \{\alpha_1 \stackrel{.}{=} \operatorname{Char} \rightarrow \alpha_6\} \\ E_4 &=& \{\alpha_1 \stackrel{.}{=} \operatorname{Bool} \rightarrow \alpha_4, \alpha_2 \rightarrow \alpha_3 \rightarrow \alpha_2 \stackrel{.}{=} \alpha_4 \rightarrow \alpha_5, \alpha_1 \stackrel{.}{=} \operatorname{Char} \rightarrow \alpha_6, \\ &\alpha_5 \stackrel{.}{=} \alpha_6 \rightarrow \alpha_7\} \end{array}$$

Bsp.: Typisierung von Lambda-geb. Variablen (2)

$$\frac{\left(\begin{array}{c} (\text{AAVK}) \\ A_1 \vdash x :: \alpha_1 \end{array}, \begin{array}{c} (\text{AAVK}) \\ A_1 \vdash \text{Const} :: \alpha_2 \rightarrow \alpha_3 \rightarrow \alpha_2, \emptyset \end{array}, \begin{array}{c} (\text{AAVF}) \\ A_1 \vdash (x \text{ True}) :: \alpha_4, E_1 \end{array} \right)}{A_1 \vdash (x \text{ True}) :: \alpha_5, E_2} \xrightarrow{\left(\begin{array}{c} (\text{AAV}) \\ (\text{RAPP}) \end{array}, \begin{array}{c} (\text{AAV}) \\ A_1 \vdash (x \text{ 'A'}) :: \alpha_6, E_3 \end{array} \right)} A_1 \vdash (x \text{ 'A'}) :: \alpha_6, E_3$$

 $A_0 \vdash \lambda x.\mathtt{const}\ (x\ \mathtt{True})\ (x\ \mathtt{'A'}) :: \alpha_1 \rightarrow \alpha_7, E_4$

wobei $A_1 = A_0 \cup \{x :: \alpha_1\}$ und:

$$\begin{array}{lll} E_1 &=& \{\alpha_1 \stackrel{.}{=} \operatorname{Bool} \rightarrow \alpha_4\} \\ E_2 &=& \{\alpha_1 \stackrel{.}{=} \operatorname{Bool} \rightarrow \alpha_4, \alpha_2 \rightarrow \alpha_3 \rightarrow \alpha_2 \stackrel{.}{=} \alpha_4 \rightarrow \alpha_5\} \\ E_3 &=& \{\alpha_1 \stackrel{.}{=} \operatorname{Char} \rightarrow \alpha_6\} \\ E_4 &=& \{\alpha_1 \stackrel{.}{=} \operatorname{Bool} \rightarrow \alpha_4, \alpha_2 \rightarrow \alpha_3 \rightarrow \alpha_2 \stackrel{.}{=} \alpha_4 \rightarrow \alpha_5, \alpha_1 \stackrel{.}{=} \operatorname{Char} \rightarrow \alpha_6, \\ &\qquad \alpha_5 \stackrel{.}{=} \alpha_6 \rightarrow \alpha_7\} \end{array}$$

Die Unifikation schlägt fehl, da Char ≠ Bool

Bsp.: Typisierung von Lambda-geb. Variablen (3)

In Haskell:

```
Main> \x -> const (x True) (x 'A')
<interactive>:1:23:
Couldn't match expected type 'Char' against inferred type 'Bool'
     Expected type: Char -> b
      Inferred type: Bool -> a
 In the second argument of 'const', namely '(x 'A')'
 In the expression: const (x True) (x 'A')
```

Bsp.: Typisierung von Lambda-geb. Variablen (3)

In Haskell:

```
Main> \x -> const (x True) (x 'A')
<interactive>:1:23:
Couldn't match expected type 'Char' against inferred type 'Bool'
     Expected type: Char -> b
      Inferred type: Bool -> a
 In the second argument of 'const', namely '(x 'A')'
 In the expression: const (x True) (x 'A')
```

- Beispiel verdeutlicht: Lambda-gebundene Variablen sind monomorph getypt!
- Das gleiche gilt für case-Pattern gebundene Variablen

Bsp.: Typisierung von Lambda-geb. Variablen (3)

In Haskell:

```
Main> \x -> const (x True) (x 'A')
<interactive>:1:23:
Couldn't match expected type 'Char' against inferred type 'Bool'
     Expected type: Char -> b
      Inferred type: Bool -> a
 In the second argument of 'const', namely '(x 'A')'
 In the expression: const (x True) (x 'A')
```

- Beispiel verdeutlicht: Lambda-gebundene Variablen sind monomorph getypt!
- Das gleiche gilt für case-Pattern gebundene Variablen
- Daher spricht man auch von let-Polymorphismus, da nur let-gebundene Variablen (Funktionen) polymorph sind.
- KFPTS+seq hat kein let, aber Superkombinatoren, die wie (ein eingeschränkten rekursives) let wirken

Typisierung rekursiver Superkombinatoren

Typisierung rekursiver Superkombinatoren

Beispiel

```
= reverseStack xs []
reverse xs
reverseStack xs stack =
       case xs of [] -> stack
                  (y:ys) -> reverseStack ys y:stack
```

Definition (direkt rekursiv, rekursiv, verschränkt rekursiv)

- Sei \mathcal{SK} eine Menge von Superkombinatoren
- Für $SK_i, SK_i \in \mathcal{SK}$ sei

$$SK_i \leq SK_j$$

gdw. SK_i den Superkombinator SK_i im Rumpf benutzt.

- \preceq^+ : transitiver Abschluss von \preceq (\preceq^* : reflexiv-transitiver Abschluss)
- SK_i ist direkt rekursiv wenn $SK_i \leq SK_i$ gilt.
- SK_i ist rekursiv wenn $SK_i \leq^+ SK_i$ gilt.
- SK_1, \ldots, SK_m sind verschränkt rekursiv, wenn $SK_i \leq^+ SK_i$ für alle $i, j \in \{1, \ldots, m\}$

Typisierung von nicht-rekursiven Superkombinatoren

- Nicht-rekursive Superkombinatoren kann man wie Abstraktionen typisieren
- Notation: $A \vdash_{\mathcal{T}} SK :: \tau$, bedeutet: unter Annahme A kann man SK mit Typ τ typisieren

- Nicht-rekursive Superkombinatoren kann man wie Abstraktionen typisieren
- Notation: $A \vdash_{\mathcal{T}} SK :: \tau$, bedeutet: unter Annahme A kann man SK mit Typ τ typisieren

Typisierungsregel für (geschlossene) nicht-rekursive SK:

$$(\mathrm{RSK1}) \ \frac{A \cup \{x_1 :: \alpha_1, \ldots, x_n :: \alpha_n\} \vdash s :: \tau, E}{A \vdash_T SK :: \forall \mathcal{X}. \sigma(\alpha_1 \to \ldots \to \alpha_n \to \tau)}$$
 wenn σ Lösung von E ,
$$SK \ x_1 \ \ldots \ x_n = s \ \text{die Definition von } SK$$
 und SK nicht rekursiv ist,
$$\text{und } \mathcal{X} \ \text{die Typvariablen in } \sigma(\alpha_1 \to \ldots \to \alpha_n \to \tau)$$

 τ -Notation: τ steht für einen Typ innerhalb der Berechnung

Beispiel: Typisierung von (.)

$$(.) f g x = f (g x)$$

 A_0 ist leer, da keine Konstruktoren oder SK vorkommen.

$$(AXV) \overline{A_1 \vdash g :: \alpha_2, \emptyset} \xrightarrow{(AXV)} \overline{A_1 \vdash x :: \alpha_3, \emptyset} \overline{A_1 \vdash f :: \alpha_1, \emptyset} \xrightarrow{(RAPP)} \overline{A_1 \vdash (g \ x) :: \alpha_5, \{\alpha_2 \doteq \alpha_3 \rightarrow \alpha_5\}} \overline{A_1 \vdash (f \ (g \ x)) :: \alpha_4, \{\alpha_2 \doteq \alpha_3 \rightarrow \alpha_5, \alpha_1 = \alpha_5 \rightarrow \alpha_4\}} \overline{A_1 \vdash (f \ (g \ x)) :: \forall \mathcal{X}.\sigma(\alpha_1 \rightarrow \alpha_2 \rightarrow \alpha_3 \rightarrow \alpha_4)}$$

wobei $A_1 = \{f :: \alpha_1, q :: \alpha_2, x :: \alpha_3\}$

Unifikation ergibt $\sigma = \{\alpha_2 \mapsto \alpha_3 \to \alpha_5, \alpha_1 \mapsto \alpha_5 \to \alpha_4\}.$ Daher: $\sigma(\alpha_1 \to \alpha_2 \to \alpha_3 \to \alpha_4) = (\alpha_5 \to \alpha_4) \to (\alpha_3 \to \alpha_5) \to \alpha_3 \to \alpha_4$

Jetzt kann man $\mathcal{X} = \{\alpha_3, \alpha_4, \alpha_5\}$ berechnen, und umbenennen:

$$(.):: \forall a, b, c.(a \rightarrow b) \rightarrow (c \rightarrow a) \rightarrow c \rightarrow b$$

- Sei $SK x_1 \ldots x_n = e$
- und SK kommt in e vor, d.h. SK ist rekursiv
- Warum kann man SK nicht ganz einfach typisieren?

Typisierung von rekursiven Superkombinatoren

- Sei $SK x_1 \ldots x_n = e$
- und SK kommt in e vor, d.h. SK ist rekursiv
- Warum kann man SK nicht ganz einfach typisieren?
- Will man den Rumpf e typisieren, so muss man den Typ von SK schon kennen!

Idee des Iterativen Typisierungsverfahrens

- Gebe SK zunächst den allgemeinsten Typ (d.h. eine Typvariable) und typisiere den Rumpf unter Benutzung dieses Typs
- Man erhält anschließend einen neuen Typ für SK
- Mache mit neuem (quantifizierten) Typ im Rumpf weiter.
- Stoppe, wenn neuer Typ = alter Typ
- Dann hat man eine konsistente Typannahme gefunden; Vermutung: auch eine ausreichend allgemeine (allgemeinste?)

Allgemeinster Typ: Typ T so dass $sem(T) = \{alle Grundtypen\}.$ Das liefert der Typ α (bzw. quantifiziert $\forall \alpha.\alpha$)

Iteratives Typisierungsverfahren

Regel zur Berechnung neuer Annahmen:

(SKREK)
$$\frac{A \cup \{x_1 :: \alpha_1, \dots, x_n :: \alpha_n\} \vdash s :: \tau, E}{A \vdash_T SK :: \sigma(\alpha_1 \to \dots \alpha_n \to \tau)}$$

wenn $SK x_1 \ldots x_n = s$ die Definition von SK, σ Lösung von E

Genau wie RSK1, aber in A muss es eine Annahme für SK geben.

Wegen verschränkter Rekursion:

- Abhängigkeitsanalyse der Superkombinatoren
- Berechnung der starken Zusammenhangskomponenten im Aufrufgraph
- Sei \simeq die Äguivalenzrelation passend zu \prec^+ , dann sind die starken Zusammenhangskomponenten gerade die Äquivalenzklassen zu \simeq .
- Jede Äquivalenzklasse wird gemeinsam typisiert

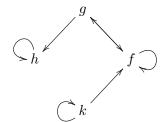
Typisierung der Gruppen entsprechend der \prec^+ -Ordnung modulo \simeq .

Iteratives Typisierungsverfahren: Vorarbeiten (2)

Beispiel:

```
f x y = if x \le 1 then y else f (x-y) (y + g x)
g x = if x==0 then (f 1 x) + (h 2) else 10
h x = if x==1 then 0 else h (x-1)
k \times y = if x==1 then y else k (x-1) (y+(f \times y))
```

Der Aufrufgraph (nur bzgl. f,g,h,k) ist



Die Äquivalenzklassen (mit Ordnung) sind $\{h\} \leq^+ \{f,g\} \leq^+ \{k\}$.

Iterativer Typisierungsalgorithmus

Eingabe: Menge von verschränkt rekursiven Superkombinatoren SK_1, \ldots, SK_m wobei "kleinere" SK's schon typisiert; (keine freien Variablen)

Anfangsannahme A enthält Typen der Konstruktoren der bereits bekannten Superkombinatoren

Iterativer Typisierungsalgorithmus

- Anfangsannahme A enthält Typen der Konstruktoren der bereits bekannten Superkombinatoren
- $A_0 := A \cup \{SK_1 :: \forall \alpha_1.\alpha_1, \dots, SK_m :: \forall \alpha_m.\alpha_m\} \text{ und } j = 0.$

Iteratives Typisierungsverfahren: Der Algorithmus

Iterativer Typisierungsalgorithmus

- Anfangsannahme A enthält Typen der Konstruktoren der bereits bekannten Superkombinatoren
- $A_0 := A \cup \{SK_1 :: \forall \alpha_1.\alpha_1, \dots, SK_m :: \forall \alpha_m.\alpha_m\} \text{ und } j = 0.$
- Solution Verwende für jeden Superkombinator SK_i (mit i = 1, ..., m) die Regel (SKREK) und Annahme A_i , um SK_i zu typisieren.

Iterativer Typisierungsalgorithmus

- Anfangsannahme A enthält Typen der Konstruktoren der bereits bekannten Superkombinatoren
- $A_0 := A \cup \{SK_1 :: \forall \alpha_1.\alpha_1, \dots, SK_m :: \forall \alpha_m.\alpha_m\} \text{ und } j = 0.$
- Solution Verwende für jeden Superkombinator SK_i (mit i = 1, ..., m) die Regel (SKREK) und Annahme A_i , um SK_i zu typisieren.
- **4** Wenn die m Typisierungen erfolgreich, d.h. für alle $i: A_i \vdash_T SK_i :: \tau_i$ Dann allquantifiziere: $SK_1 :: \forall \mathcal{X}_1.\tau_1, \ldots, SK_m :: \forall \mathcal{X}_m.\tau_m$ Setze $A_{i+1} := A \cup \{SK_1 :: \forall \mathcal{X}_1.\tau_1, \dots, SK_m :: \forall \mathcal{X}_m.\tau_m\}$

Iteratives Typisierungsverfahren: Der Algorithmus

Iterativer Typisierungsalgorithmus

- Anfangsannahme A enthält Typen der Konstruktoren der bereits bekannten Superkombinatoren
- $A_0 := A \cup \{SK_1 :: \forall \alpha_1.\alpha_1, \dots, SK_m :: \forall \alpha_m.\alpha_m\} \text{ und } j = 0.$
- Solution Verwende für jeden Superkombinator SK_i (mit i = 1, ..., m) die Regel (SKREK) und Annahme A_i , um SK_i zu typisieren.
- **4** Wenn die m Typisierungen erfolgreich, d.h. für alle $i: A_i \vdash_T SK_i :: \tau_i$ Dann allquantifiziere: $SK_1 :: \forall \mathcal{X}_1.\tau_1, \ldots, SK_m :: \forall \mathcal{X}_m.\tau_m$ Setze $A_{i+1} := A \cup \{SK_1 :: \forall \mathcal{X}_1.\tau_1, \dots, SK_m :: \forall \mathcal{X}_m.\tau_m\}$
- **5** Wenn $A_j \neq A_{j+1}$ (=: Gleichheit bis auf Umbenennung), dann gehe mit i := i + 1 zu Schritt (3). Anderenfalls, d.h. wenn $A_i = A_{i+1}$, war A_i konsistent; die Typen der SK_i sind entsprechend in A_i zu finden. **Ausgabe** Die allquantifizierten polymorphen Typen der SK_i

Iteratives Typisierungsverfahren: Der Algorithmus

Iterativer Typisierungsalgorithmus

Eingabe: Menge von verschränkt rekursiven Superkombinatoren SK_1, \ldots, SK_m wobei "kleinere" SK's schon typisiert; (keine freien Variablen)

- Anfangsannahme A enthält Typen der Konstruktoren der bereits bekannten Superkombinatoren
- $A_0 := A \cup \{SK_1 :: \forall \alpha_1.\alpha_1, \dots, SK_m :: \forall \alpha_m.\alpha_m\} \text{ und } j = 0.$
- Solution Verwende für jeden Superkombinator SK_i (mit i = 1, ..., m) die Regel (SKREK) und Annahme A_i , um SK_i zu typisieren.
- **4** Wenn die m Typisierungen erfolgreich, d.h. für alle $i: A_i \vdash_T SK_i :: \tau_i$ Dann allquantifiziere: $SK_1 :: \forall \mathcal{X}_1.\tau_1, \ldots, SK_m :: \forall \mathcal{X}_m.\tau_m$ Setze $A_{i+1} := A \cup \{SK_1 :: \forall \mathcal{X}_1.\tau_1, \dots, SK_m :: \forall \mathcal{X}_m.\tau_m\}$
- **5** Wenn $A_j \neq A_{j+1}$ (=: Gleichheit bis auf Umbenennung), dann gehe mit i := i + 1 zu Schritt (3). Anderenfalls, d.h. wenn $A_i = A_{i+1}$, war A_i konsistent; die Typen der SK_i sind entsprechend in A_i zu finden. **Ausgabe** Die allquantifizierten polymorphen Typen der SK_i

Sollte irgendwann ein Fail in der Unifikation auftreten, dann sind SK_1, \ldots, SK_m nicht typisierbar.

Eigenschaften des Algorithmus

- Die berechneten Typen pro Iterationsschritt sind eindeutig bis auf Umbenennung.
- ⇒ bei Terminierung liefert der Algorithmus eindeutige Typen.
- Pro Iteration werden die neuen Typen spezieller (oder bleiben gleich). D.h. Monotonie bzgl. der Grundtypensemantik: $\operatorname{sem}(T_i) \supseteq \operatorname{sem}(T_{i+1})$
- Bei Nichtterminierung gibt es keinen polymorphen Typ. Grund: Monotonie und man hat mit größten Annahmen begonnen.
- Das iterative Verfahren berechnet einen größten Fixpunkt (bzgl. der Grundtypensemantik): Menge wird solange verkleinert, bis sie sich nicht mehr ändert.
 - D.h. es wird der allgemeinste polymorphe Typ berechnet

Beispiele: length (1)

$$\texttt{length}\ xs = \texttt{case}_{\texttt{List}}\ xs\ \texttt{of}\{\texttt{Nil} \to 0; (y:ys) \to 1 + \texttt{length}\ ys\}$$

Annahme:

$$A = \{ \texttt{Nil} :: \forall a.[a], (:) :: \forall a.a \rightarrow [a] \rightarrow [a], 0, 1 :: \texttt{Int}, (+) :: \texttt{Int} \rightarrow \texttt{Int} \rightarrow \texttt{Int} \}$$
 1. Iteration:
$$A_0 = A \cup \{ \texttt{length} :: \forall \alpha.\alpha \}$$

(a)
$$A_0 \cup \{xs :: \alpha_1\} \vdash xs :: \tau_1, E_1$$

(b)
$$A_0 \cup \{xs :: \alpha_1\} \vdash \text{Nil} :: \tau_2, E_2$$

(c)
$$A_0 \cup \{xs :: \alpha_1, y :: \alpha_4, ys :: \alpha_5\} \vdash (y : ys) :: \tau_3, E_3$$

(d)
$$A_0 \cup \{xs :: \alpha_1\} \vdash 0 :: \tau_4, E_4$$

(e)
$$A_0 \cup \{xs :: \alpha_1, y :: \alpha_4, ys :: \alpha_5\}\} \vdash (1 + \text{length } ys) :: \tau_5, E_5$$

$$\frac{A_0 \cup \{xs :: \alpha_1\} \vdash (\mathsf{case_{List}} \ xs \ \mathsf{of} \{\mathtt{Nil} \to 0; (y : ys) \to 1 + \mathsf{length} \ xs\}) :: \alpha_3,}{E_1 \cup E_2 \cup E_3 \cup E_4 \cup E_5 \cup \{\tau_1 \doteq \tau_2, \tau_1 \doteq \tau_3, \alpha_3 \doteq \tau_4, \alpha_3 \doteq \tau_5\}}$$

$$A_0 \vdash_T \mathtt{length} :: \sigma(lpha_1
ightarrow lpha_3)$$

wobei σ Lösung von

$$E_1 \cup E_2 \cup E_3 \cup E_4 \cup E_5 \cup \{\tau_1 = \tau_2, \tau_1 = \tau_3, \alpha_3 = \tau_4, \alpha_3 = \tau_5\}$$

$$\begin{array}{l} \text{(c)} \ \ \underset{(\text{RAPP})}{\text{(RAPP)}} \frac{A'_0 \qquad \vdash (:) :: \alpha_9 \rightarrow [\alpha_9] \rightarrow [\alpha_9], \emptyset}{A'_0 \vdash ((:) \ y) :: \alpha_8, \{\alpha_9 \rightarrow [\alpha_9] \rightarrow [\alpha_9] \stackrel{.}{=} \alpha_4 \rightarrow \alpha_8\}} \ , \\ \text{(AXV)} \ \frac{A'_0 \vdash y :: \alpha_4, \emptyset}{A'_0 \vdash ((:) \ y) :: \alpha_8, \{\alpha_9 \rightarrow [\alpha_9] \rightarrow [\alpha_9] \stackrel{.}{=} \alpha_4 \rightarrow \alpha_8\}} \ , \\ \text{(AXV)} \ \frac{A'_0 \vdash y s :: \alpha_5, \emptyset}{A'_0 \vdash (y :: y s) :: \alpha_7, \{\alpha_9 \rightarrow [\alpha_9] \rightarrow [\alpha_9] \stackrel{.}{=} \alpha_4 \rightarrow \alpha_8, \alpha_8 \stackrel{.}{=} \alpha_5 \rightarrow \alpha_7\}} \\ \text{wobei} \ A_0 = A_0 \cup \big\{ x s :: \alpha_1, y :: \alpha_4, y s :: \alpha_5 \big\} \\ \text{D.h.} \ \tau_3 = \alpha_7 \ \text{und} \ E_3 = \big\{ \alpha_9 \rightarrow [\alpha_9] \rightarrow [\alpha_9] \stackrel{.}{=} \alpha_4 \rightarrow \alpha_8, \alpha_8 \stackrel{.}{=} \alpha_5 \rightarrow \alpha_7 \big\} \\ \end{array}$$

Beispiele: length (3)

$$\text{(e)} \quad \underbrace{\frac{A_0^{(\text{RAPP)}}}{A_0' \vdash (+) :: \text{Int} \to \text{Int} \to \text{Int} \to \text{Int}, \emptyset}_{A_0' \vdash 1 :: \text{Int} \to \text{Int} \to \text{Int}, \emptyset}, \underbrace{\frac{A_0^{(\text{RAPN})}}{A_0' \vdash (+) :: \text{Int} \to \text{Int} \to \text{Int} \to \text{Int} \to \text{Int}, \emptyset}_{A_0' \vdash 1 :: \text{Int}, \emptyset}, \underbrace{\frac{A_0^{(\text{RAPN})}}{A_0' \vdash (\text{length} :: \alpha_{13}, \emptyset}, \underbrace{\frac{A_0^{(\text{NAN})}}{A_0' \vdash (ys) :: \alpha_{5}, A_{10}}_{A_0' \vdash (ys) :: \alpha_{5}, A_{10}}, \underbrace{\frac{A_0^{(\text{RAPP)}}}{A_0' \vdash (\text{length} :: \alpha_{13}, \emptyset)}, \underbrace{\frac{A_0^{(\text{NAN})}}{A_0' \vdash (ys) :: \alpha_{5}, A_{10}}_{A_{10} \vdash (ys) :: \alpha_{5}, A_{10}}, \underbrace{\frac{A_0^{(\text{RAPP)}}}{A_0' \vdash (\text{length} :: \alpha_{13}, \emptyset)}, \underbrace{\frac{A_0^{(\text{NAN})}}{A_0' \vdash (ys) :: \alpha_{5}, A_{10}}_{A_{10} \vdash (ys) :: \alpha_{5}, A_{10}^{(\text{RAPP)}}, A_0^{(\text{RAPP)}}}_{A_0' \vdash (\text{length} :: \alpha_{13}, \emptyset)}, \underbrace{\frac{A_0^{(\text{NAN})}}{A_0' \vdash (ys) :: \alpha_{5}, A_{10}^{(\text{NAN})}}_{A_0' \vdash (ys) :: \alpha_{5}, A_{10}^{(\text{RAPP)}}, A_0^{(\text{RAPP)}}, A_0^{($$

D.h. $\tau_5 = \alpha_{10}$ und

$$E_5 = \{ \texttt{Int} \rightarrow \texttt{Int} \rightarrow \texttt{Int} \doteq \texttt{Int} \rightarrow \alpha_{11}, \alpha_{13} \doteq \alpha_5 \rightarrow \alpha_{12}, \alpha_{11} \doteq \alpha_{12} \rightarrow \alpha_{10} \}$$

Zusammengefasst:

Beispiele: length (3)

$$A_0 \vdash_T \mathtt{length} :: \sigma(\alpha_1 \to \alpha_3)$$

wobei σ Lösung von

$$\begin{split} &\{\alpha_9 \rightarrow [\alpha_9] \rightarrow [\alpha_9] \doteq \alpha_4 \rightarrow \alpha_8, \alpha_8 \doteq \alpha_5 \rightarrow \alpha_7, \\ &\texttt{Int} \rightarrow \texttt{Int} \rightarrow \texttt{Int} \doteq \texttt{Int} \rightarrow \alpha_{11}, \alpha_{13} \doteq \alpha_5 \rightarrow \alpha_{12}, \alpha_{11} \doteq \alpha_{12} \rightarrow \alpha_{10}, \\ &\alpha_1 \doteq [\alpha_6], \alpha_1 \doteq \alpha_7, \alpha_3 \doteq \texttt{Int}, \alpha_3 \doteq \alpha_{10} \end{split}$$

Die Unifikation ergibt als Unifikator

$$\{\alpha_1 \mapsto [\alpha_9], \alpha_3 \mapsto \operatorname{Int}, \alpha_4 \mapsto \alpha_9, \alpha_5 \mapsto [\alpha_9], \alpha_6 \mapsto \alpha_9, \alpha_7 \mapsto [\alpha_9], \alpha_8 \mapsto [\alpha_9] \to [\alpha_9], \alpha_{10} \mapsto \operatorname{Int}, \alpha_{11} \mapsto \operatorname{Int} \to \operatorname{Int}, \alpha_{12} \mapsto \operatorname{Int}, \alpha_{13} \mapsto [\alpha_9] \to \operatorname{Int}\}$$

daher
$$\sigma(\alpha_1 \to \alpha_3) = [\alpha_9] \to \text{Int}$$

$$A_1 = A \cup \{ \texttt{length} :: \forall \alpha . [\alpha] \rightarrow \texttt{Int} \}$$

Da $A_0 \neq A_1$ muss man mit A_1 erneut iterieren.

2. Iteration: Ergibt den gleichen Typ, daher war A_1 konsistent.

Beispiel

$$\begin{split} &\mathbf{g} \ \mathbf{x} = \mathbf{1} \ : \ (\mathbf{g} \ (\mathbf{g} \ '\mathbf{c}')) \\ &A = \{1 :: \mathbf{Int}, \mathbf{Cons} :: \forall a.a \rightarrow [a] \rightarrow [a], \ '\mathbf{c}' :: \mathbf{Char}\} \\ &A_0 = A \cup \{\mathbf{g} :: \forall \alpha.\alpha\} \ (\mathbf{und} \ A_0' = A_0 \cup \{x :: \alpha_1\}): \end{split}$$

$$\frac{A_0^{(\text{AxSK})}}{A_0' \vdash \text{Cons } :: \alpha_5 \rightarrow [\alpha_5] \rightarrow [\alpha_5], \emptyset} \xrightarrow{\text{(AxSK)}} \frac{A_0' \vdash \text{C } :: \text{Char}, A_0' \vdash \text{C } :: \alpha_6, \emptyset} \xrightarrow{\text{(AxSK)}} \frac{A_0' \vdash \text{(g } :: \alpha_8, \emptyset}{A_0' \vdash \text{(g } :: \alpha_6, \emptyset)} \xrightarrow{\text{(AxSK)}} \frac{A_0' \vdash \text{(g } :: \alpha_6, \emptyset)}{A_0' \vdash \text{(g } :: \alpha_6, \emptyset)} \xrightarrow{\text{(AxSK)}} \frac{A_0' \vdash \text{(g } :: \alpha_7, A_8 = \text{Char} \rightarrow \alpha_7, A_8 = \text{Char} \rightarrow \alpha_7, A_0' \vdash \text{Cons } 1 \times A_0' \vdash$$

wobei $\sigma = \{\alpha_2 \mapsto [\mathtt{Int}], \alpha_3 \mapsto [\mathtt{Int}] \to [\mathtt{Int}] \to [\mathtt{Int}], \alpha_4 \mapsto [\mathtt{Int}], \alpha_5 \mapsto \mathtt{Int}, \alpha_6 \mapsto \alpha_7 \to [\mathtt{Int}], \alpha_8 \mapsto \mathtt{Char} \to \alpha_7\}$ die Lösung von der Grand $\{\alpha_8 = \text{Char} \rightarrow \alpha_7, \alpha_6 = \alpha_7 \rightarrow \alpha_4, \alpha_5 \rightarrow [\alpha_5] \rightarrow [\alpha_5] = \text{Int} \rightarrow \alpha_3, \alpha_3 = \alpha_4 \rightarrow \alpha_2\} \text{ ist.}$

D.h.
$$A_1 = A \cup \{g :: \forall \alpha.\alpha \rightarrow [Int]\}.$$

Nächste Iteration zeigt: A_1 ist konsistent.

Beachte: Für die Funktion g kann Haskell keinen Typ herleiten:

```
Prelude> let g x = 1:(g(g 'c'))
<interactive>:1:13:
Couldn't match expected type '[t]' against inferred type 'Char'
      Expected type: Char -> [t]
      Inferred type: Char -> Char
    In the second argument of '(:)', namely '(g (g 'c'))'
    In the expression: 1 : (g (g 'c'))
```

Iteratives Verfahren ist allgemeiner als Haskell (2)

Beachte: Für die Funktion g kann Haskell keinen Typ herleiten:

```
Prelude> let g x = 1:(g(g 'c'))
<interactive>:1:13:
Couldn't match expected type '[t]' against inferred type 'Char'
      Expected type: Char -> [t]
      Inferred type: Char -> Char
    In the second argument of '(:)', namely '(g (g 'c'))'
    In the expression: 1 : (g (g 'c'))
```

Aber: Haskell kann den Typ verifizieren, wenn man ihn angibt:

```
let g::a \rightarrow [Int]; g x = 1:(g(g 'c'))
Prelude> :t g
g :: a -> [Int]
```

Grund: Wenn Typ vorhanden, führt Haskell keine Typinferenz durch, sondern verifiziert nur die Annahme. g wird im Rumpf wie bereits typisiert behandelt.

Bsp.: Mehrere Iterationen sind nötig (1)

$$g x = x : (g (g 'c'))$$

- $A = \{ \text{Cons} :: \forall a.a \rightarrow [a] \rightarrow [a], \text{'c'} :: \text{Char} \}.$
- $A_0 = A \cup \{g :: \forall \alpha.\alpha\}$

$$\frac{(\text{AxSK})}{A'_0 \vdash \text{Cons} :: \alpha_5 \rightarrow [\alpha_5] \rightarrow [\alpha_5], \emptyset} \overset{(\text{AxV})}{,} \frac{A'_0 \vdash x :: \alpha_1, \emptyset}{A'_0 \vdash x :: \alpha_1, \emptyset} \xrightarrow{(\text{RAPP})} \frac{A'_0 \vdash \text{g} :: \alpha_6, \emptyset}{A'_0 \vdash \text{g} :: \alpha_6, \emptyset} \overset{(\text{AxSK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AxKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AxKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AxKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AxKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{A'_0 \vdash \text{g} :: \alpha_8, \emptyset} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{,} \overset{(\text{AXKK})}{,} \frac{A'_0 \vdash \text{g} :: \alpha_8, \emptyset}{,} \overset{(\text{AXKK})}{,} \overset{(\text{AX$$

 $A_0 \vdash_T g :: \sigma(\alpha_1 \to \alpha_2) = \alpha_5 \to [\alpha_5]$ wobei $\sigma = \{\alpha_1 \mapsto \alpha_5, \alpha_2 \mapsto [\alpha_5], \alpha_3 \mapsto [\alpha_5] \to [\alpha_5], \alpha_4 \mapsto [\alpha_5], \alpha_6 \mapsto \alpha_7 \to [\alpha_5], \alpha_8 \mapsto \mathsf{Char} \to \alpha_7\}$ die Lösung von $\{\alpha_8 \doteq \mathtt{Char} \rightarrow \alpha_7, \alpha_6 \doteq \alpha_7 \rightarrow \alpha_4, \alpha_5 \rightarrow [\alpha_5] \rightarrow [\alpha_5] \doteq \alpha_1 \rightarrow \alpha_3, \alpha_3 \doteq \alpha_4 \rightarrow \alpha_2\}$ ist.

D.h.
$$A_1 = A \cup \{g :: \forall \alpha.\alpha \rightarrow [\alpha]\}.$$

Bsp.: Mehrere Iterationen sind nötig (2)

Da $A_0 \neq A_1$ muss eine weitere Iteration durchgeführt werden. Sei $A'_1 = A_1 \cup \{x :: \alpha_1\}$:

$$(\text{ASSK}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \text{Char}, \emptyset}{A_1' \vdash \text{g} :: \alpha_6 \rightarrow [\alpha_6], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{ANS}) \frac{A_1' \vdash \text{g} :: \alpha_8 \rightarrow [\alpha_8], \emptyset}, (\text{$$

Daher ist $A_2 = A \cup \{g :: [Char] \rightarrow [[Char]]\}.$

Bsp.: Mehrere Iterationen sind nötig (3)

Da $A_1 \neq A_2$ muss eine weitere Iteration durchgeführt werden: Sei $A_2' = A_2 \cup \{x :: \alpha_1\}$:

$$\frac{(\text{AsSK})}{A_2' \vdash \text{Cons} \ :: \alpha_5 \rightarrow [\alpha_5] \rightarrow [\alpha_5], \emptyset}, \frac{(\text{AsX})}{A_2' \vdash \text{Cons} \ :: \alpha_5 \rightarrow [\alpha_5] \rightarrow [\alpha_5], \emptyset}, \frac{(\text{AsX})}{A_2' \vdash \text{Cons} \ :: \alpha_7}, \frac{(\text{AsSK})}{A_2' \vdash \text{Cons} \ :: \alpha_5 \rightarrow [\alpha_5] \rightarrow [\alpha_5], \emptyset}, \frac{(\text{AsX})}{A_2' \vdash \text{Cons} \ :: \alpha_7}, \frac{(\text{AsSK})}{A_2' \vdash \text{Cons} \ :: \alpha_7}, \frac{A_2' \vdash \text{Cons} \ :: \alpha_7, \alpha_7 \rightarrow [\text{Char}] \rightarrow [\text{Char$$

Unifikation:

$$egin{aligned} [exttt{Char}] &
ightharpoonup [exttt{Char}]
ightharpoonup Char, \ &
ightharpoonup [exttt{Char}]
ightharpoonup lpha_7, \ &
ightharpoonup Fail \end{aligned}$$

g ist nicht typisierbar.

Daher gilt ...

Beobachtung

Das iterative Typisierungsverfahren benötigt unter Umständen mehrere Iterationen, bis ein Ergebnis (untypisiert / konsistente Annahme) gefunden wurde.

Beachte: Es gibt auch Beispiele, die zeigen, dass mehrere Iterationen nötig sind, um eine konsistente Annahme zu finden (Übungsaufgabe).

Es gilt $f \simeq g$, d.h. das iterative Verfahren typisiert f und g gemeinsam.

$$\begin{split} A &= \{ \mathtt{Cons} :: \forall a.a \rightarrow [a] \rightarrow [a], \mathtt{Nil} : \forall a.a \}. \\ A_0 &= A \cup \{ \mathtt{f} :: \forall \alpha.\alpha, \mathtt{g} :: \forall \alpha.\alpha \} \end{split}$$

$$(\text{AXK}) \\ (\text{RAPP}) \\ (\text{RAPP}) \\ (\text{RAPP}) \\ (\text{RAPP}) \\ (\text{RAPP}) \\ (\text{SKRek}) \\ \hline \frac{A_0 \vdash \text{Cons} :: \alpha_4 \to [\alpha_4] \to [\alpha_4], \emptyset}{A_0 \vdash (\text{Cons g}) :: \alpha_3, \{\alpha_4 \to [\alpha_4] \to [\alpha_4] = \alpha_5 \to \alpha_3\}}, (\text{AXK}) \\ \hline \frac{A_0 \vdash (\text{Cons g}) :: \alpha_3, \{\alpha_4 \to [\alpha_4] \to [\alpha_4] = \alpha_5 \to \alpha_3\}}{A_0 \vdash [\text{g}] :: \alpha_1, \{\alpha_4 \to [\alpha_4] \to [\alpha_4] = \alpha_5 \to \alpha_3, \alpha_3 = [\alpha_2] \to \alpha_1\}} \\ \hline \frac{A_0 \vdash_{\textbf{T}} \textbf{f} :: \sigma(\alpha_1) = [\alpha_5]}{\sigma = \{\alpha_1 \mapsto [\alpha_5], \alpha_2 \mapsto \alpha_5, \alpha_3 \mapsto [\alpha_5] \to [\alpha_5], \alpha_4 \mapsto \alpha_5\} \text{ ist}} \\ \texttt{L\"{o}sung von } \{\alpha_4 \to [\alpha_4] \to [\alpha_4] = \alpha_5 \to \alpha_3, \alpha_3 = [\alpha_2] \to \alpha_1\}}$$

Nichtterminierung des iterativen Verfahrens (2)

$$(\text{RAPP}) \xrightarrow{\text{(RAPP)}} \frac{\overline{A_0 \vdash \text{Cons} :: \alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4], \emptyset}}{A_0 \vdash (\text{Cons f}) ::: \alpha_3, \{\alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4] \doteq \alpha_5 \rightarrow \alpha_3\}} \xrightarrow{\text{(AxK)}} \frac{\overline{A_0 \vdash \text{f} :: \alpha_5}}{A_0 \vdash (\text{Nil} :: [\alpha_2], \emptyset} \xrightarrow{\text{(SKREK)}} \frac{A_0 \vdash (\text{Cons f}) ::: \alpha_3, \{\alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4] \doteq \alpha_5 \rightarrow \alpha_3\}}{A_0 \vdash T g ::: \alpha_1, \{\alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4] \doteq \alpha_5 \rightarrow \alpha_3, \alpha_3 \doteq [\alpha_2] \rightarrow \alpha_1\}} \xrightarrow{\text{(SKREK)}} \frac{A_0 \vdash T g ::: \sigma(\alpha_1) = [\alpha_5]}{\sigma = \{\alpha_1 \mapsto [\alpha_5], \alpha_2 \mapsto \alpha_5, \alpha_3 \mapsto [\alpha_5] \rightarrow [\alpha_5], \alpha_4 \mapsto \alpha_5\} \text{ ist}}$$

Lösung von $\{\alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4] = \alpha_5 \rightarrow \alpha_3, \alpha_3 = [\alpha_2] \rightarrow \alpha_1\}$

Daher ist $A_1 = A \cup \{f :: \forall a.[a], g :: \forall a.[a] \}$. Da $A_1 \neq A_0$ muss man weiter iterieren.

Nichtterminierung des iterativen Verfahrens (3)

$$(\text{RAPP}) \\ (\text{RAPP}) \\ (\text{RAPP}) \\ (\text{SKRek}) \\ \hline \frac{A_1 \vdash \text{Cons} :: \alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4], \emptyset}{A_1 \vdash (\text{Cons } g) :: \alpha_3, \{\alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4] \Rightarrow [\alpha_5] \rightarrow \alpha_3\}}, (\text{AXK}) \\ \hline \frac{A_1 \vdash (\text{Cons } g) :: \alpha_3, \{\alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4] \Rightarrow [\alpha_5] \rightarrow \alpha_3\}}{A_1 \vdash [g] :: \alpha_1, \{\alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4] \Rightarrow [\alpha_5] \rightarrow \alpha_3, \alpha_3 \Rightarrow [\alpha_2] \rightarrow \alpha_1\}} \\ \hline \frac{A_1 \vdash [g] :: \alpha_1, \{\alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4] \Rightarrow [\alpha_5] \rightarrow [\alpha_5]]}{A_1 \vdash_T \mathbf{f} :: \sigma(\alpha_1) \Rightarrow [[\alpha_5]]} \\ \sigma = \{\alpha_1 \mapsto [[\alpha_5]], \alpha_2 \mapsto [\alpha_5], \alpha_3 \mapsto [[\alpha_5]] \rightarrow [[\alpha_5]], \alpha_4 \mapsto [\alpha_5]\} \text{ ist } \\ \\ \mathsf{L\"{o}sung von} \ \{\alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4] \Rightarrow [\alpha_4] \Rightarrow [\alpha_5] \rightarrow \alpha_3, \alpha_3 \Rightarrow [\alpha_2] \rightarrow \alpha_1\}$$

$$\begin{array}{l} \text{(AXK)} \\ \text{(RAPP)} \\ \text{(RAPP)} \\ \text{(RAPP)} \\ \text{(SKREK)} \\ \end{array} \\ \begin{array}{l} A_1 \vdash \text{Cons} :: \alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4], \emptyset \text{ , } \\ \text{(AXSK)} \\ \hline A_1 \vdash \text{f} :: [\alpha_5] \\ \hline A_1 \vdash (\text{Cons f}) :: \alpha_3, \{\alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4] = [\alpha_5] \rightarrow \alpha_3 \} \text{ , } \\ \text{(AXK)} \\ \hline A_1 \vdash [\text{f}] :: \alpha_1, \{\alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4] = [\alpha_5] \rightarrow \alpha_3, \alpha_3 = [\alpha_2] \rightarrow \alpha_1 \} \\ \hline \hline A_1 \vdash T \text{g} :: \sigma(\alpha_1) = [[\alpha_5]] \\ \sigma = \{\alpha_1 \mapsto [[\alpha_5]], \alpha_2 \mapsto [\alpha_5], \alpha_3 \mapsto [[\alpha_5]] \rightarrow [[\alpha_5]], \alpha_4 \mapsto [\alpha_5] \} \text{ ist} \\ \text{L\"{o}sung von } \{\alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4] = [\alpha_5] \rightarrow \alpha_3, \alpha_3 = [\alpha_2] \rightarrow \alpha_1 \} \end{array}$$

Daher ist $A_2 = A \cup \{f :: \forall a.[[a]], g :: \forall a.[[a]]\}$. Da $A_2 \neq A_1$ muss man weiter iterieren.

Nichtterminierung des iterativen Verfahrens (4)

Vermutung: Terminiert nicht

Beweis: (Induktion) betrachte den i. Schritt:

$$A_i = A \cup \{\mathtt{f} :: \forall a. [a]^i, \mathtt{g} :: \forall a. [a]^i\}$$
 wobei $[a]^i$ i-fach geschachtelte Liste

$$(\text{RAPP}) \\ (\text{RAPP}) \\ (\text{RAPP}) \\ (\text{SKREK}) \\ (\text{SKREK}) \\ (\text{SKREK}) \\ \frac{A_i \vdash \text{Cons} :: \alpha_4 \to [\alpha_4] \to [\alpha_4], \emptyset}{A_i \vdash \text{Cons} \; g) :: \alpha_3, \{\alpha_4 \to [\alpha_4] \to [\alpha_4] \doteq [\alpha_5]^i \to \alpha_3\}} \\ \frac{A_i \vdash (\text{Cons} \; g) :: \alpha_3, \{\alpha_4 \to [\alpha_4] \to [\alpha_4] \doteq [\alpha_5]^i \to \alpha_3\}}{A_i \vdash [g] :: \alpha_1, \{\alpha_4 \to [\alpha_4] \to [\alpha_4] \doteq [\alpha_5]^i \to \alpha_3, \alpha_3 \doteq [\alpha_2] \to \alpha_1\}} \\ \frac{A_i \vdash [g] :: \alpha_1, \{\alpha_4 \to [\alpha_4] \to [\alpha_4] \doteq [\alpha_5]^i \to \alpha_3, \alpha_3 \doteq [\alpha_2] \to \alpha_1\}}{A_i \vdash \mathbf{T} \; \mathbf{T} \; :: \; \sigma(\alpha_1) = [[\alpha_5]^i]} \\ \sigma = \{\alpha_1 \mapsto [[\alpha_5]^i], \alpha_2 \mapsto [\alpha_5]^i, \alpha_3 \mapsto [[\alpha_5]^i] \to [\alpha_5]^i, \alpha_4 \mapsto [\alpha_5]^i\} \; \text{ist}} \\ \text{L\"{o}sung von} \; \{\alpha_4 \to [\alpha_4] \to [\alpha_4] \doteq [\alpha_5]^i \to \alpha_3, \alpha_3 \doteq [\alpha_2] \to \alpha_1\}}$$

$$(\text{RAPP}) \\ (\text{RAPP}) \\ (\text{RAPP}) \\ (\text{SKREK}) \\ \hline \\ (SKREK) \\ \hline \\ A_i \vdash \text{Cons} :: \alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4], \emptyset \ , \\ (AxSK) \\ \hline \\ A_i \vdash \text{f} :: [\alpha_5]^i \\ \hline \\ A_i \vdash (\text{Cons} \ \textbf{f}) :: \alpha_3, \{\alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4] \doteq [\alpha_5]^i \rightarrow \alpha_3 \} \ , \\ (AxK) \\ \hline \\ A_i \vdash \text{II} :: \alpha_1, \{\alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4] \doteq [\alpha_5]^i \rightarrow \alpha_3, \alpha_3 \doteq [\alpha_2] \rightarrow \alpha_1 \} \\ \hline \\ A_i \vdash \text{II} :: \alpha_1, \{\alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4] \doteq [\alpha_5]^i \rightarrow \alpha_3, \alpha_3 \doteq [\alpha_2] \rightarrow \alpha_1 \} \\ \hline \\ A_i \vdash \text{II} :: \alpha_1, \{\alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4] \rightarrow [\alpha_5]^i \rightarrow [\alpha_5]^i \} \text{ ist} \\ \hline \\ C = \{\alpha_1 \mapsto [[\alpha_5]^i], \alpha_2 \mapsto [\alpha_5]^i, \alpha_3 \mapsto [[\alpha_5]^i] \rightarrow [\alpha_5]^i, \alpha_4 \mapsto [\alpha_5]^i \} \text{ ist} \\ C \Rightarrow \text{Lösung von } \{\alpha_4 \rightarrow [\alpha_4] \rightarrow [\alpha_4] \doteq [\alpha_5]^i \rightarrow \alpha_3, \alpha_3 \doteq [\alpha_2] \rightarrow \alpha_1 \} \\ \hline$$

D.h.
$$A_{i+1} = A \cup \{f :: \forall a. [a]^{i+1}, g :: \forall a. [a]^{i+1} \}.$$

Beobachtung

Das iterative Typisierungsverfahren terminiert nicht immer.

Beobachtung

Das iterative Typisierungsverfahren terminiert nicht immer.

Es gilt sogar:

Satz

Die iterative Typisierung ist unentscheidbar.

Dies folgt aus der Unentscheidbarkeit der so genannten Semi-Unifikation von First-Order Termen. (siehe Forschungsliteratur)

Aufrufhierarchie

- Das iterative Verfahren benötigt die Information aus der Aufrufhierarchie nicht:
- Es liefert die gleichen Typen, unabhängig davon, in welcher Reihenfolge man die SK typisiert.

Man spricht von Type Safety wenn gilt:

("Type Preservation")

Die Typisierung bleibt unter Reduktion erhalten

Für einen Grundtyp τ :

Wenn $t :: \tau$ vor der Reduktion $t \to t'$,

dann auch $t' :: \tau$ danach.

D.h. Typen der Ausdrücke können allgemeiner werden.

• ("Progress Lemma"): Getypte geschlossene Ausdrücke sind reduzibel, solange sie keine WHNF sind .

Lemma

Type Safety (2)

Sei s ein direkt dynamisch ungetypter KFPTS+seg-Ausdruck. Dann kann das iterative Typsystem keinen Typ für s herleiten.

Beweis: s direkt dynamisch ungetypt ist, gdw.:

- $s = R[\mathsf{case}_T \ (c \ s_1 \ \dots \ s_n) \ \mathsf{of} \ Alts] \ \mathsf{und} \ c \ \mathsf{ist} \ \mathsf{nicht} \ \mathsf{vom} \ \mathsf{Typ} \ T.$ Typisierung von case fügt Gleichungen hinzu, so dass der Typ von $(c s_1 \ldots s_n)$ und Typ von Pattern gleich ist. Daher wird die Unifikation scheitern.
- $s = R[case_T \lambda x.t \text{ of } Alts]$: Analog, Gleichungen verlangen dass $(\lambda x.t)$ einen Funktionstyp erhält, Pattern aber nie einen solchen haben.
- $R[(c \ s_1 \ \ldots \ s_{ar(c)}) \ t]$: Typisierung typisiert die Anwendung $((c \ s_1 \ \ldots \ s_{\operatorname{ar}(c)}) \ t)$ wie eine verschachtelte Anwendung $(((c \ s_1) \ \ldots) \ s_{ar(c)}) \ t)$. Es werden Gleichungen hinzugefügt, die sicherstellen, dass c höchstens ar(c) Argumente verarbeiten kann.

Lemma (Type Preservation)

Sei s ein wohl-getypter, geschlossener KFPTS+seg-Ausdruck und $s \xrightarrow{no} s'$. Dann ist s' wohl-getypt.

Beweis: Hierfür muss man die einzelnen Fälle einer (β) -, $(SK-\beta)$ und (case)-Reduktion durchgehen. Für die Typherleitung von skann man aus der Typherleitung einen Typ für jeden Unterterm von s ablesen. Bei der Reduktion werden diese Typen einfach mitkopiert.

Aus den letzten beiden Lemmas folgt:

Satz

Sei s ein wohl-getypter, geschlossener KFPTS+seg-Ausdruck. Dann ist s nicht dynamisch ungetypt.

Lemma (Progress Lemma)

Sei s ein wohl-getypter, geschlossener KFPTS+seg-Ausdruck. Dann gilt:

- s ist eine WHNF. oder
- s ist normalordnungsreduzibel, d.h. $s \xrightarrow{no} s'$.

Beweis Betrachtet man die Fälle, wann ein geschlossener KFPTS+seq-Ausdruck irreduzibel ist, so erhält man: s ist eine WHNF oder s ist direkt-dynamisch ungetypt. Daher folgt das Lemma.

Type Safety (5)

Satz

Die iterative Typisierung für KFPTS+seq erfüllt die "Type-safety"-Eigenschaft.

Hindley-Milner Typisierung

Hindley-Milner Typisierung als Einschränkung der iterativen Typisierung

Roger Hindley; Robin Milner und Luis Damas haben beigetragen.

Erzwingen der Terminierung (der Typcheck-Iteration) UNIVERSITÄT

- SK_1, \ldots, SK_m ist Gruppe verschränkt rekursiver Superkombinatoren
- $A_i \vdash_T SK_1 :: \tau_1, \ldots, A_i \vdash_T SK_m :: \tau_m$ seien die durch die i. Iteration hergeleiteten Typen

Hindley-Milner-Schritt: Typisiere SK_1, \ldots, SK_m auf einmal, mit der Annahme:

$$A_M = A \cup \{SK_1 :: \tau_1, \dots, SK_m :: \tau_m\};$$

ohne Quantoren

D.h.: keine umbenannten Kopien der Typen bei verschiedenen Vorkommen des gleichen Namens

$$\begin{array}{c} \text{f\"{u}r} \ i=1,\ldots,m: \\ A_M \cup \{x_{i,1}::\alpha_{i,1},\ldots,x_{i,n_i}::\alpha_{i,n_i}\} \vdash s_i::\tau_i',E_i \\ \hline A_M \vdash_T \text{f\"{u}r} \ i=1,\ldots,m \ SK_i::\sigma(\alpha_{i,1}\to\ldots\to\alpha_{i,n_i}\to\tau_i') \\ \text{wenn } \sigma \text{ L\"{o}sung von } E_1\cup\ldots\cup E_m\cup\bigcup_{i=1}^m \{\tau_i\stackrel{.}{=}\alpha_{i,1}\to\ldots\to\alpha_{i,n_i}\to\tau_i'\} \\ \text{und} \quad SK_1 \ x_{1,1}\ \ldots\ x_{1,n_1} &= s_1 \\ \ldots \\ SK_m \ x_{m,1}\ \ldots\ x_{m,n_m} &= s_m \\ \text{die Definitionen von } SK_1,\ldots,SK_m \text{ sind} \end{array}$$

Als zusätzliche Regel muss im Typisierungsverfahren hinzugefügt werden:

$$(\mathrm{AxSK2}) \ \overline{A \cup \{SK :: \tau\} \vdash SK :: \tau}$$
 wenn τ nicht allguantifiziert ist

Erzwingen der Terminierung (3)

Unterschied zum iterativen Schritt:

- Die Typen der zu typisierenden SKs werden nicht allquantifiziert. (allquantifiziert sind die bekannten Typen von anderen SKs.)
- Daher sind während der Typisierung keine Kopien dieser Typen möglich
- Am Ende werden die angenommenen Typen mit den hergeleiteten Typen unifiziert.

Erzwingen der Terminierung (3)

Unterschied zum iterativen Schritt:

- Die Typen der zu typisierenden SKs werden nicht allquantifiziert. (allquantifiziert sind die bekannten Typen von anderen SKs.)
- Daher sind während der Typisierung keine Kopien dieser Typen möglich
- Am Ende werden die angenommenen Typen mit den hergeleiteten Typen unifiziert.

Daraus folgt:

Die neue Annahme, die man durch die (SKREKM)-Regel herleiten kann, ist stets konsistent.

Nach einem Hindley-Milner-Schritt terminiert das Verfahren sofort.

Hindley-Milner-Typisierung ist analog zum iterativen Typisierungsverfahren.

Unterschiede:

- Es wird nur ein Iterationsschritt durchgeführt.
- Die aktuell zu typisierenden Superkombinatoren SK_i sind mit allgemeinstem Typ α_i (ohne Allquantor) in den Annahmen.

Hindley-Milner-Typisierung ist analog zum iterativen Typisierungsverfahren.

Unterschiede:

- Es wird nur ein Iterationsschritt durchgeführt.
- Die aktuell zu typisierenden Superkombinatoren SK_i sind mit allgemeinstem Typ α_i (ohne Allquantor) in den Annahmen.

Haskell verwendet das Hindley-Milner-Typisierungs-Verfahren. Allerdings erweitert. . .

Das Hindley-Milner-Typisierungsverfahren, genauer

Hindley-Milner-Typisierungsverfahren:

 SK_1, \ldots, SK_m sind alle SKs einer Äquivalenzklasse bzgl. \simeq wobei alle kleineren (benutzten) SKs bereits getypt sind.

- Annahme A enthält Typen der bereits typisierten SKs und Konstruktoren (allquantifiziert)
- für $i = 1, \ldots, m$: $A \cup \{SK_1 :: \beta_1, \ldots, SK_m :: \beta_m\}$ $\frac{\cup \left\{x_{i,1} :: \alpha_{i,1}, \ldots, x_{i,n_i} :: \alpha_{i,n_i}\right\} \vdash s_i :: \tau_i, E_i}{A \vdash_T \text{f\"{u}r } i = 1, \ldots, m \ SK_i :: \sigma(\alpha_{i,1} \to \ldots \to \alpha_{i,n_i} \to \tau_i)}$ (MSKRek) wenn σ Lösung von $E_1 \cup \ldots \cup E_m \cup \bigcup_{i=1}^m \{\beta_i \stackrel{.}{=} \alpha_{i,1} \rightarrow \ldots \rightarrow \alpha_{i,n_i} \rightarrow \tau_i \}$ und $SK_1 x_{1,1} \dots x_{1,n_1} = s_1$

2 Typisiere SK_1, \ldots, SK_m mit der Regel (MSKREK):

$$SK_m \ x_{m,1} \ \dots \ x_{m,n_m} = s_m$$
 die Definitionen von SK_1,\dots,SK_m sind

Falls Unifikation fehlschlägt, sind SK_1, \ldots, SK_m nicht Hindley-Milner-typisierbar

Vereinfachung: Regel für einen rekursiven SK

$$(\text{MSKRek1}) \ \frac{A \cup \{SK :: \beta, x_1 :: \alpha_1, \dots, x_n :: \alpha_n\} \vdash s :: \tau, E}{A \vdash_T SK :: \sigma(\alpha_1 \to \dots \to \alpha_n \to \tau)}$$
 wenn σ Lösung von $E \cup \{\beta \stackrel{.}{=} \alpha_1 \to \dots \to \alpha_n \to \tau\}$ und $SK \ x_1 \ \dots \ x_n = s$ die Definition von SK ist

Für das Hindley-Milner-Typisierungsverfahren gelten die folgenden Eigenschaften:

- Das Verfahren terminiert.
- Das Verfahren liefert eindeutige Typen (bis auf Umbenennung von Variablen)
- Die Hindley-Milner-Typisierung ist entscheidbar.
- Das Problem, ob ein Ausdruck Hindley-Milner-typisierbar ist, ist DEXPTIME-vollständig
- Das Verfahren liefert u.U. eingeschränktere Typen als das iterative Verfahren. Insbesondere kann ein Ausdruck iterativ typisierbar, aber nicht Hindley-Milner-typisierbar sein.
- Das Hindley-Milner-Typisierungsverfahren benötigt das Wissen um die Aufrufhierarchie der Superkombinatoren: Es berechnet evtl. weniger allgemeine Typen bzw. Typisierung schlägt fehl, wenn man nicht von unten nach oben typisiert.

Man benötigt manchmal exponentiell viele Typvariablen (in der Größe des Ausdrucks):

```
(let x0 = \z->z in
  (let x1 = (x0.x0) in
    (let x2 = (x1,x1) in
      (1et x3 = (x2,x2) in
         (let x4 = (x3,x3) in
            (let x5 = (x4, x4) in
               (let x6 = (x5,x5) in x6))))))
```

Die Anzahl der Typvariablen ist 2^6 .

Verallgemeinert man das Beispiel mit Parameter n, dann sind 2^n Typvariablen notwendig.

Beispiele: map

(a) bis (e) folgt


```
map f xs = case xs of {
                            [] -> []
                           (y:ys) \rightarrow (f y):(map f ys)
A = \{ \mathtt{Cons} :: \forall a.a \rightarrow [a] \rightarrow [a], \mathtt{Nil} :: \forall a.[a] \}
Sei A' = A \cup \{ \text{map} :: \beta, f :: \alpha_1, xs :: \alpha_2 \} und A'' = A' \cup \{ y : \alpha_3, ys :: \alpha_4 \}.
                                                       (a) A' \vdash xs :: \tau_1 . E_1
                                                       (b) A' \vdash \text{Nil} :: \tau_2, E_2
                                                       (c) A'' \vdash (Cons \ y \ ys) :: \tau_3, E_3
                                                       (d) A' \vdash \text{Nil} :: \tau_4, E_4
                                                       (e) A'' \vdash (Cons(f y) (map f ys)) :: \tau_5, E_5
                 (\operatorname{RCASE}) \ \overline{A' \vdash \mathtt{case} \ xs} \ \mathtt{of} \ \{\mathtt{Nil} \to \mathtt{Nil}; \mathtt{Cons} \ y \ ys \to \mathtt{Cons} \ y \ (\mathtt{map} \ f \ ys)\} :: \alpha, E
          (MSKRek1)
                                                                   A \vdash_T \mathtt{map} :: \sigma(\alpha_1 \to \alpha_2 \to \alpha)
                                            wenn \sigma Lösung von E \cup \{\beta \stackrel{.}{=} \alpha_1 \rightarrow \alpha_2 \rightarrow \alpha\}
wobei E = E_1 \cup E_2 \cup E_3 \cup E_4 \cup E_5 \cup \{\tau_1 = \tau_2, \tau_1 = \tau_3, \alpha = \tau_4, \alpha = \tau_5\}.
```

Beispiele: map (2)

- (a) $(AxV) \overline{A' \vdash xs :: \alpha_2 \cdot \emptyset}$ D.h. $\tau_1 = \alpha_2$ und $E_1 = \emptyset$.
- (AxK) $A' \vdash Nil :: [\alpha_5], \emptyset$ (b) D.h. $\tau_2 = [\alpha_5]$ und $E_2 = \emptyset$

$$\text{(RAPP)} \quad \frac{A'' \vdash \mathsf{Cons} :: \alpha_6 \to [\alpha_6] \to [\alpha_6]}{A'' \vdash \mathsf{(Cons} \; y) :: \alpha_7, \{\alpha_6 \to [\alpha_6] \to [\alpha_6] \to [\alpha_6] = \alpha_3 \to \alpha_7\}} , \overset{(\mathsf{AXV})}{A'' \vdash y :: \alpha_3, \emptyset}$$

$$A'' \vdash (\mathsf{Cons} \; y \; ys) :: \alpha_8, \{\alpha_6 \to [\alpha_6] \to [\alpha_6] = \alpha_3 \to \alpha_7, \alpha_7 = \alpha_4 \to \alpha_8\}$$

- D.h. $\tau_3 = \alpha_8$ und $E_3 = \{\alpha_6 \rightarrow [\alpha_6] \rightarrow [\alpha_6] = \alpha_3 \rightarrow \alpha_7, \alpha_7 = \alpha_4 \rightarrow \alpha_8\}$
- (d) $A^{(AxK)} \overline{A' \vdash Nil :: [\alpha_9], \emptyset}$ D.h. $\tau_4 = [\alpha_9]$ und $E_4 = \emptyset$.

Beispiele: map (3)

$$(\text{AAK}) \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}] \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}, \frac{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset}{A'' \vdash \text{Cons} :: \alpha_{10} \rightarrow [\alpha_{10}], \emptyset},$$

D.h. $\tau_5 = \alpha_{14}$ und

$$E_5 = \{ \alpha_{11} \stackrel{.}{=} \alpha_{13} \rightarrow \alpha_{14}, \alpha_{10} \rightarrow [\alpha_{10}] \rightarrow [\alpha_{10}] \stackrel{.}{=} \alpha_{15} \rightarrow \alpha_{11}, \alpha_1 \stackrel{.}{=} \alpha_3 \rightarrow \alpha_{15}, \beta \stackrel{.}{=} \alpha_1 \rightarrow \alpha_{12}, \alpha_{12} \stackrel{.}{=} \alpha_4 \rightarrow \alpha_{13} \}$$

Gleichungssystem $E \cup \{\beta = \alpha_1 \rightarrow \alpha_2 \rightarrow \alpha\}$ durch Unifikation lösen:

$$\begin{split} &\{\alpha_6 \rightarrow [\alpha_6] \rightarrow [\alpha_6] \doteq \alpha_3 \rightarrow \alpha_7, \alpha_7 \doteq \alpha_4 \rightarrow \alpha_8, \alpha_{11} \doteq \alpha_{13} \rightarrow \alpha_{14}, \\ &\alpha_{10} \rightarrow [\alpha_{10}] \rightarrow [\alpha_{10}] \doteq \alpha_{15} \rightarrow \alpha_{11}, \alpha_1 \doteq \alpha_3 \rightarrow \alpha_{15}, \beta \doteq \alpha_1 \rightarrow \alpha_{12}, \\ &\alpha_{12} \doteq \alpha_4 \rightarrow \alpha_{13}, \alpha_2 \doteq [\alpha_5], \alpha_2 \doteq \alpha_8, \alpha \doteq [\alpha_9], \alpha \doteq \alpha_{14}, \\ &\beta \doteq \alpha_1 \rightarrow \alpha_2 \rightarrow \alpha \} \end{split}$$

Die Unifikation ergibt

$$\begin{split} \sigma &= \{\alpha \mapsto [\alpha_{10}], \alpha_1 \mapsto \alpha_6 \to \alpha_{10}, \alpha_2 \mapsto [\alpha_6], \alpha_3 \mapsto \alpha_6, \alpha_4 \mapsto [\alpha_6], \alpha_5 \mapsto \alpha_6, \\ \alpha_7 \mapsto [\alpha_6] \to [\alpha_6], \alpha_8 \mapsto [\alpha_6], \alpha_9 \mapsto \alpha_{10}, \alpha_{11} \mapsto [\alpha_{10}] \to [\alpha_{10}], \\ \alpha_{12} \mapsto [\alpha_6] \to [\alpha_{10}], \alpha_{13} \mapsto [\alpha_{10}], \alpha_{14} \mapsto [\alpha_{10}], \alpha_{15} \mapsto \alpha_{10}, \\ \beta \mapsto (\alpha_6 \to \alpha_{10}) \to [\alpha_6] \to [\alpha_{10}], \end{split}$$

D.h. $map :: \sigma(\alpha_1 \to \alpha_2 \to \alpha) = (\alpha_6 \to \alpha_{10}) \to [\alpha_6] \to [\alpha_{10}].$

Beispiele: erneute Betrachtung

$$g x = x : (g (g 'c'))$$

Iteratives Verfahren liefert Fail nach mehreren Iteration.

Hindley-Milner: $A = \{ \text{Cons} :: \forall a.a \rightarrow [a] \rightarrow [a], \text{'c'} :: \text{Char} \}.$

Sei
$$A' = A \cup \{x :: \alpha, g :: \beta\}.$$

$$\frac{A' \vdash \mathsf{Cons} :: \alpha_5 \to [\alpha_5] \to [\alpha_5], \emptyset}{A' \vdash \mathsf{Cons} :: \alpha_5 \to [\alpha_5] \to [\alpha_5], \emptyset}, \frac{A' \vdash \mathsf{X} :: \alpha, \emptyset}{A' \vdash \mathsf{X} :: \alpha, \emptyset} \xrightarrow{\text{(AASK2)}} \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \alpha_7, \{\beta \doteq \mathsf{Char} \to \alpha_7\}} \xrightarrow{\text{(AASK12)}} \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \alpha_7, \{\beta \doteq \mathsf{Char} \to \alpha_7\}} \xrightarrow{\text{(AASK2)}} \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta, \emptyset}, \frac{A' \vdash \mathsf{g} :: \beta, \emptyset}{A' \vdash \mathsf{g} :: \beta,$$

Die Unifikation schlägt jedoch fehl, da Char mit einer Liste unifiziert werden soll. D.h. g ist nicht Hindley-Milner-typisierbar.

Beispiele: erneute Betrachtung (2)

$$g x = 1 : (g (g 'c'))$$

Iteratives Verfahren liefert $g :: \forall \alpha . \alpha \rightarrow [Int]$ Hindley-Milner: Sei $A' = A \cup \{x :: \alpha, g :: \beta\}$.

$$\frac{(\text{AxSK2})}{A' \vdash \text{Cons} :: \alpha_5 \rightarrow [\alpha_5] \rightarrow [\alpha_5], \emptyset}, \frac{(\text{AxK})}{A' \vdash 1 :: \text{Int}, \emptyset} \frac{(\text{AxSK2})}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{(\text{AxSK2})}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{A' \vdash \text{g} :: \beta, \emptyset}{A' \vdash \text{g} :: \beta, \emptyset}, \frac{$$

 $\{\beta \doteq \mathtt{Char} \rightarrow \alpha_7, \beta \doteq \alpha_7 \rightarrow \alpha_4, \alpha_5 \rightarrow [\alpha_5] \rightarrow [\alpha_5] \doteq \mathtt{Int} \rightarrow \alpha_3, \alpha_3 \doteq \alpha_4 \rightarrow \alpha_2, \beta \doteq \alpha \rightarrow \alpha_2 \} \text{ ist.}$

Die Unifikation schlägt fehl, da $[\alpha_5] \doteq \mathtt{Char}$ unifiziert werden soll.

Motivation Typen Typisierungsverfahren Typklassen It. Verfahren Das Hindley-Milner-Typisierungsverfahren

Iteratives Verfahren kann allgemeinere Typen liefern

```
data Baum a = Leer | Knoten a (Baum a) (Baum a)
```

Die Typen für die Konstruktoren sind

```
Leer :: \forall a. Baum a und
```

Knoten :: $\forall a. \ a \rightarrow \texttt{Baum} \ \texttt{a} \rightarrow \texttt{Baum} \ \texttt{a} \rightarrow \texttt{Baum} \ \texttt{a}$

```
g \times y = Knoten True (g \times y) (g y \times)
```

Hindley-Milner-Typcheck $g :: a \rightarrow a \rightarrow Baum Bool$

Iteratives Verfahren: $g :: a \to b \to Baum Bool$

Grund (im Verfahren):

Iteratives Verfahren erlaubt Kopien des Typs für g, Hindley-Milner nicht.

Haskell akzeptiert für g die allgemeinere Typannahme:

```
g:: a -> b -> Baum Bool
g \times y = Knoten True (g \times y) (g \times x)
```

Hindley-Milner Typisierung und Type Safety

- Hindley-Milner-getypte Programme sind immer auch iterativ typisierbar
- Daher sind Hindley-Milner getypte Programme niemals dynamisch ungetypt
- Es gilt auch das Progress-Lemma: Hindley-Milner getypte (geschlossene) Programme sind WHNFs oder reduzibel

 Type-Preservation: Gilt in KFPTSP+seg aber vermutlich nicht in Haskell (als Kernsprache mit let)

```
let x = (let y = \u -> z in (y [], y True, seq x True))
    z = const z x
in x
ist Hindley-Milner-typisierbar.
```

• Wenn man eine so genannte (*llet*)-Reduktion durchführt, erhält man:

```
let x = (y [], y True, seq x True)
     v = \langle u - \rangle z
     z = const z x
in x
```

Ist nicht mehr Hindley-Milner-typisierbar (in Kernsprache mit let)

Hindley-Milner Typisierung und Type Safety (2)

 Type-Preservation: Gilt in KFPTSP+seg aber vermutlich nicht in Haskell (als Kernsprache mit let)

```
let x = (let y = \u -> z in (y [], y True, seq x True))
    z = const z x
in x
ist Hindley-Milner-typisierbar.
```

• Wenn man eine so genannte (*llet*)-Reduktion durchführt, erhält man:

```
let x = (y [], y True, seq x True)
     v = \langle u - \rangle z
     z = const z x
in x
```

Ist nicht mehr Hindley-Milner-typisierbar (in Kernsprache mit let)

"Vermutlich": Haskells operationale Semantik ist anders definiert

Im Let-Kernsprache: Hindley-Milner-typisierbar:

```
let x = (let y = \u \rightarrow z in (y [], y True, seq x True))
    z = const. z. x
in x
```

NICHT Hindley-Milner typisierbar (aber iterativ typisierbar):

```
let x = (y [], y True, seq x True)
     y = \langle u - \rangle z
     z = const z x
in x
```

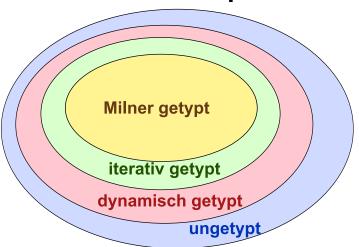
 Der Effekt kommt von der Allquantifizierung nach erfolgreicher Typisierung:

Vorher: einmal kann allquantifiziert werden Nachher: alles wird auf einmal typisiert.

Das Beispiel ist aber unkritisch, denn:

- Type-Preservation gilt für das iterative Verfahren;
- typisierte Programm sind dynamisch getypt;
- Hindley-Milner-typisierbar impliziert iterativ typisierbar und
- Reduktion erhält iterative Typisierbarkeit

KFPTS+seq



- Prädikativer Polymorphismus: Typvariablen stehen für Grundtypen (= Haskell, KFPTSP+seq)
- Imprädikativer Polymorphismus: Typvariablen stehen auch für polymorphe Typen (mit Quantoren!)

- Prädikativer Polymorphismus: Typvariablen stehen für Grundtypen (= Haskell, KFPTSP+seg)
- Imprädikativer Polymorphismus: Typvariablen stehen auch für polymorphe Typen (mit Quantoren!)

Versuch \x -> const (x True) (x 'A') zu typisieren:

x ist eine Funktion, die für alle Eingabetypen den gleichen Ergebnistyp liefert

- Prädikativer Polymorphismus: Typvariablen stehen für Grundtypen (= Haskell, KFPTSP+seg)
- Imprädikativer Polymorphismus: Typvariablen stehen auch für polymorphe Typen (mit Quantoren!)

Versuch \x -> const (x True) (x 'A') zu typisieren:

x ist eine Funktion, die für alle Eingabetypen den gleichen Ergebnistyp liefert

Mit imprädikativem Polymorphismus geht das:

```
(\x -> const (x True) (x 'A'))::(forall b.(forall a. a -> b) -> b)
```

Prädikativ / Imprädikativ

- Prädikativer Polymorphismus: Typvariablen stehen für
- Imprädikativer Polymorphismus: Typvariablen stehen auch für polymorphe Typen (mit Quantoren!)

Versuch \x -> const (x True) (x 'A') zu typisieren:

Grundtypen (= Haskell, KFPTSP+seg)

x ist eine Funktion, die für alle Eingabetypen den gleichen Ergebnistyp liefert

Mit imprädikativem Polymorphismus geht das:

```
(\x -> const (x True) (x 'A'))::(forall b.(forall a. a -> b) -> b)
Aber:
```

- Kein Haskell, sondern Erweiterung
- Typinferenz / Typisierbarkeit nicht mehr entscheidbar!

Typisierung unter Typklassen

Typisierung unter Typklassen

Annahmen:

- Erweiterung der Typisierungsalgorithmen auf Typklassen-Beschränkungen.
- Während der Typisierung kommen Typklassenbeschränkungen nur aus den Annahmen (Superkombinatoren)
- Basis: KFPTSP, erweitert um Typklassen.

Beispiel

```
genericLength:: Num b => [a] \rightarrow b
```

berechnet aus der Definition Beschränkung kommt von der Addition +.

Erweiterung um Typklassen

- Typklassen Cl als Namen
- Typen von Ausdrücken sind ein Paar, geschrieben: wobei C Typklassenconstraint, τ ist polymorpher Typ.
- Ein Typklassenconstraint ist eine Menge von Ausdrücken Cl a. Cl ist ein Typklassenname und a eine Typvariable. Alle Typvariablen in C kommen auch in τ vor.)
- Es gibt vorgegebene Funktionen (auch Klassenfunktionen) deren Typ schon nichttriviale Typklassenconstraints enthält. (Haskell: Konstruktoren sind ohne Typklassenconstraints)

Beispiel

- ist Typklasse der (Basis-)Typen zu Zahlen Num
- (+):: Num a => $a \rightarrow a \rightarrow a$

Eine global vorgegebene Menge $M_{Typklassenaxiome}$ von Formeln:

- **1** $Cl \ \tau$ (d.h. $\tau \in Cl$) für Basistypen τ . : z.B.: Cl(List Bool) ist nicht möglich
- 2 Implikationen der Form $C \implies Cl(TC \ a_1 \dots a_n)$ wobei a_1, \ldots, a_n verschiedene Typvariablen sind und in C nur Typklassenconstraints der Form Cl_i a_i vorkommen. Pro Typkonstruktor TC darf es nur eine solche Implikation geben.
- **1** Implikationen der Form $Cl_1 \ a \implies Cl_2 \ a$.

Berechnungen auf Typklassenconstraints

Fragestellung: gehört ein (Grund-) Typ zu einer Typklasse?

Verfahren: Typklassenconstraints entscheiden

Eingabe: Constraint-Menge $C = \{Cl \ \tau\}$.

Vereinfache die Menge mit den zwei folgenden Schritten solange, bis die Menge leer ist und somit alle Constraints erfüllt.

- **1** Wähle ein Constraint Cl TC aus C: wenn dies gilt, d.h. in $M_{Typklassenaxiome}$ enthalten ist, wobei wir die einfachen Implikation $Cl_1 \ a \implies Cl_2 \ a$ hierbei mitberücksichtigen, dann entferne das Constraint aus der Menge C.
- 2 Nehme ein Constraint Cl $(TC \ \tau_1 \dots \tau_n)$ aus C (mit maximaler Größe); wenn es eine Implikation $C_0 \implies Cl(TC \ a_1 \dots a_n)$ gibt, dann ersetze das Constraint in \mathcal{C} durch die Menge $\sigma(C_0)$, wobei $\sigma = \{a_1 \mapsto \tau_1, \dots, a_n \mapsto \tau_n\}$ ist.

Wenn die Constraint-Menge leer ist, dann ergibt sich True.

Wenn diese nicht komplett eliminiert werden kann, ergibt sich insgesamt False.

Gegeben als Axiome:

- Eq Int, und Eq Bool,
- \bullet Eq $a \Longrightarrow \text{Eq } [a].$
- {Eq a, Eq b} \Longrightarrow Eq (a, b).

Typklassenconstraints: Beispiel

Gegeben als Axiome:

- Eq Int, und Eq Bool,
- \bullet Eq $a \Longrightarrow \text{Eq } [a].$
- {Eq a, Eq b} \Longrightarrow Eq (a, b).

Start:
$$\{Eq ([Int], Bool)\}$$

Gegeben als Axiome:

```
Eq Int, und Eq Bool,
```

• Eq
$$a \Longrightarrow \text{Eq } [a].$$

• {Eq
$$a$$
, Eq b } \Longrightarrow Eq (a, b) .

```
Gilt Eq ([Int],Bool). ?
```

```
{Eq ([Int], Bool)}
Start:
```

{Eq [Int], Eq Bool} wg. Implikation für Paare

Typklassenconstraints: Beispiel

Gegeben als Axiome:

```
Eq Int, und Eq Bool,
\bullet Eq a \Longrightarrow \text{Eq } [a].
```

• {Eq a, Eq b} \Longrightarrow Eq (a, b).

```
Gilt Eq ([Int],Bool). ?
```

```
Start:
            {Eq ([Int], Bool)}
            {Eq [Int], Eq Bool}
                                   wg. Implikation für Paare
            {Eq Int, Eq Bool}
                                   wg. Implikation für Listen
```

Typklassenconstraints: Beispiel

Gegeben als Axiome:

```
Eq Int, und Eq Bool,
```

• Eq
$$a \Longrightarrow \text{Eq } [a].$$

• {Eq
$$a$$
, Eq b } \Longrightarrow Eq (a, b) .

```
Gilt Eq ([Int],Bool). ?
```

```
{Eq ([Int], Bool)}
Start:
            {Eq [Int], Eq Bool}
                                   wg. Implikation für Paare
            {Eq Int, Eq Bool}
                                   wg. Implikation für Listen
                                   da beide gelten
            Ø.
```

Ergebnis: True

Was ist ein Baumautomat?

- Analog zu endlichem Automaten, aber statt Strings werden endliche Bäume eingelesen und akzeptiert oder verworfen.
- Bäume sind first-order Terme ohne Variablen. Werden manchmal auch "ranked trees" genannt.

Ein Baum B wird folgendermaßen verarbeitet von einem Baumautomaten T:

- Jedes Blatt wird mit dem Zustand entsprechend T markiert
- Knoten werden markiert (von den Blättern her): Wenn $f s_1 \dots s_n$ der Knoten ist, und s_i schon mit a_i markiert ist, dann markiere Knoten mit dem label $f(a_1, \ldots, a_n)$ entsprechend dem Baumautomaten T
- Wenn die Wurzel mit a markiert wird, und a ist ein akzeptierender Zustand von T, dann wird der Baum B von Takzeptiert.
- Die Menge der akzeptierten Bäume ist die Baumsprache zu T.

Aussagenlogische Auswertung

.

- ullet Das algorithmische Problem, ob $Cl\ au$ gilt, ist eigentlich dasselbe wie die Frage, ob ein Baumautomat einen gegebenen Baum akzeptiert oder nicht.
- Der Baumautomat ist gegeben durch die Typklassenaxiome.
- Hier gibt es den Unterschied, ob der Baumautomat deterministisch ist oder nicht. und ob er von oben oder von unten den Baum abarbeitet.
- Das Problem ist mit einem polynomiellen Algorithmus entscheidbar.
- Zu allgemeinen Aussagen, insbesondere Komplexität, siehe Buch zu Tree Automata (Literatur im Skript). In speziellen Fall der Typklassen hat man deterministische Varianten.

Definition

Die (Grundtypen-)Semantik eines Typs unter den Constraints kann man so definieren:

$$sem(C, \tau) = \{\sigma(\tau) \mid \sigma \text{ setzt Grundtypen für Typvariablen ein }$$
 und für alle Constraints
$$(\mathit{TC}\ a) \in C : (\sigma(a) \in \mathit{sem}(\mathit{TC})\}$$

Die Axiome kann man als Mengendefinitionen ansehen.

Typklassen: Beispiele für Typisierung

Typklassen, Axiome und Klassenfunktionen zu Haskell-Typklassen wie Num, Ord, und Show sind vorhanden. Ebenso Typ von Klassenfunktionen wie + ist schon gegeben als: $+ :: \{ \text{Num } a \} \Rightarrow a \rightarrow a \rightarrow a.$

Typklassen: Beispiele für Typisierung

Typklassen, Axiome und Klassenfunktionen zu Haskell-Typklassen wie Num, Ord, und Show sind vorhanden. Ebenso Typ von Klassenfunktionen wie + ist schon gegeben als: $+ :: \{ \text{Num } a \} \Rightarrow a \rightarrow a \rightarrow a.$

Beispiel Typisierung

$$\lambda x.\lambda y.(x,y,x+y).$$

Typklassen, Axiome und Klassenfunktionen zu Haskell-Typklassen wie Num, Ord, und Show sind vorhanden. Ebenso Typ von Klassenfunktionen wie + ist schon gegeben als: $+ :: \{ \text{Num } a \} \Rightarrow a \rightarrow a \rightarrow a.$

Beispiel Typisierung

$$\lambda x.\lambda y.(x,y,x+y).$$

 $x::\alpha_1,y::\alpha_2$

Typ von + erzwingt: $a = \alpha_1 = \alpha_2$ und Num a.

M. Schmidt-Schauß

(07) Typisierung

Typklassen: Beispiele für Typisierung

Typklassen, Axiome und Klassenfunktionen zu Haskell-Typklassen wie Num, Ord, und Show sind vorhanden. Ebenso Typ von Klassenfunktionen wie + ist schon gegeben als: $+ :: \{ \text{Num } a \} \Rightarrow a \rightarrow a \rightarrow a.$

Beispiel Typisierung

$$\lambda x.\lambda y.(x,y,x+y).$$

Typ von + erzwingt: $a = \alpha_1 = \alpha_2$ und Num a.

Es ergibt sich:

 $x :: \alpha_1, y :: \alpha_2$

$$\lambda x.\lambda y.(x,y,x+y)::\{\text{Num }a\} \Rightarrow a \rightarrow a \rightarrow (a,a,a)$$

Typisierung unter Typklassen: Unifikation

Anderungen der Unifikation:

- **1** Man startet mit einer Gleichung $s \doteq t$ und eine Menge \mathcal{C} von Typklassenconstraints für Typvariablen.
- Man wendet die Unifikationsregeln auf die Gleichungen an, bis sich am Ende eine Substitution σ ergibt.
- Man vereinfacht die Constraint-Menge vollständig. Wenn danach alle Constraints nur noch die Form $(TC \ a)$ haben, dann ist das Verfahren erfolgreich. Ergebnis ist die Substitution σ und das Constraint \mathcal{C}' als $\sigma\mathcal{C}$.

Typisierung unter Typklassen: Unifikation

- Analog sind die Änderungen bei den Typisierungsverfahren
- von Ausdrücken und Superkombinatoren. Dies gilt für das Hindley-Milnerverfahren.
- Iteratives Typisierungsverfahren: sollte auch gehen: es werden nicht nur in jedem Schritt die Typen verfeinert, sondern auch die Constraints.

124 / 126

```
Addition auf Paaren: (x1,x2) + (y1,y2) = (x1+y1,x2+y2)
Implikations axiom für Paare: {Num a, Num b} \Longrightarrow Num (a, b).
Typisiere die Funktion: f x = x+(1,2)
```

```
Addition auf Paaren: (x1,x2) + (y1,y2) = (x1+y1,x2+y2)
Implikations axiom für Paare: {Num a, Num b} \Longrightarrow Num (a, b).
Typisiere die Funktion: f x = x+(1,2)
x :: \alpha
+ :: \{ \text{Num } a \} \Rightarrow a \rightarrow a \rightarrow a.
Gleichungen: \alpha \doteq a, a \doteq (Int, Int)
Constraint: \{\text{Num } a\}.
```

```
Addition auf Paaren: (x1,x2) + (y1,y2) = (x1+y1,x2+y2)
Implikations axiom für Paare: {Num a, Num b} \Longrightarrow Num (a, b).
Typisiere die Funktion: f x = x+(1,2)
x :: \alpha
+ :: \{ \text{Num } a \} \Rightarrow a \rightarrow a \rightarrow a.
Gleichungen: \alpha \doteq a, a \doteq (Int, Int)
Constraint: \{\text{Num } a\}.
Unifikation ergibt \sigma = \{a \mapsto (\text{Int}, \text{Int}), \alpha \mapsto (\text{Int}, \text{Int})\}
Constraintmenge: {Num (Int, Int)}.
```

```
Addition auf Paaren: (x1,x2) + (y1,y2) = (x1+y1,x2+y2)
Implikations axiom für Paare: {Num a, Num b} \Longrightarrow Num (a, b).
Typisiere die Funktion: f x = x+(1,2)
x :: \alpha
+ :: \{ \text{Num } a \} \Rightarrow a \rightarrow a \rightarrow a.
Gleichungen: \alpha \doteq a, a \doteq (Int, Int)
Constraint: \{\text{Num } a\}.
Unifikation ergibt \sigma = \{a \mapsto (\text{Int}, \text{Int}), \alpha \mapsto (\text{Int}, \text{Int})\}
Constraintmenge: {Num (Int, Int)}.
Implikation und Basisconstraints zeigen, dass das Constraint gilt!
Resultat: f :: (Int, Int) \rightarrow (Int, Int)
```

Typisiere die Funktion: $g \times y = x+(y,y)$

Typisiere die Funktion: $g \times y = x+(y,y)$

$$x :: \alpha, y :: \beta \\ + :: \{ \text{Num } a \} \Rightarrow a \rightarrow a \rightarrow a.$$

Gleichungen:
$$\alpha \doteq (\beta, \beta), a \doteq \alpha$$

Constraint: $\{\text{Num } a\}.$


```
Typisiere die Funktion: g \times y = x+(y,y)
x::\alpha,y::\beta
+ :: \{ \text{Num } a \} \Rightarrow a \rightarrow a \rightarrow a.
Gleichungen: \alpha \doteq (\beta, \beta), a \doteq \alpha
Constraint: \{\text{Num } a\}.
Unifikation ergibt \sigma = \{a \mapsto (\beta, \beta), \alpha \mapsto (\beta, \beta)\}\
Constraintmenge: {Num (\beta, \beta)}.
```



```
Typisiere die Funktion: g \times y = x+(y,y)
```

$$\begin{array}{l} x::\alpha,y::\beta\\ +::\{\operatorname{Num}\ a\} \Rightarrow a\to a\to a. \end{array}$$

Gleichungen:
$$\alpha \doteq (\beta, \beta), a \doteq \alpha$$

Constraint:
$$\{\text{Num } a\}.$$

Unifikation ergibt
$$\sigma = \{a \mapsto (\beta, \beta), \alpha \mapsto (\beta, \beta)\}$$

Constraintmenge: {Num (β, β) }.

Implikation ergibt als Constraint: {Num β }.

Resultat:
$$g :: \{\text{Num } \beta\} \implies (\beta, \beta) \rightarrow \beta \rightarrow (\beta, \beta)$$


```
genericLength xs = case xs of [] -> 0;
                    y:ys -> 1 + genericLength ys
```

```
Typisierung; ergibt Gleichungen und Bedingungen:
```

```
xs::\alpha_1, 0:: \text{Num } b_1 \implies b_1, 1:: \text{Num } b_2 \implies b_2
genericLength :: \alpha_1 \rightarrow \alpha_2.
wegen (case xs of []...): \alpha_1 = [\alpha_4]
genericLength ys::\alpha_2
+ :: Num \ a \implies a \rightarrow a \rightarrow a.
a=b_2, a=\alpha_2, b_1=\alpha_2; Num a, Num b_1, Num b_2.
Ergibt insgesamt: genericLength :: Num a \implies |b| \rightarrow a
```