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Introduction



Explainable Artificial Intelligence

▶ For many real world applications of artificial intelligence it is important that
humans can understand the reasoning behind the decisions or predictions made
by an algorithm

Figure from Explainable Artificial Intelligence (XAI)

https://www.bigdatavietnam.org/2017/11/explainable-artificial-intelligence-xai.html


Example: Medical Diagnosis

▶ Machine learning algorithms used for medical diagnoses must be explainable so
that doctors and patients trust the predictions

Figure from Deep neural network to locate and segment brain tumors outperformed the expert technicians who

created the training data, Mitchell et al., 2020



Example: Autonomous Driving

▶ Machine learning systems for autonomous driving eventually have to make life and
death decisions that should be explainable

Figure from ClueNet : A Deep Framework for Occluded Pedestrian Pose Estimation, Perla et al., 2019



Problem: Neural Networks are Black-Box Models

▶ The inner decision processes of artificial neural networks are generally opaque

▶ Computations in neural networks are entirely numerical, lacking any
human-understandable symbolic representations of concepts

Figure from Getting Startet with Neural Networks

https://learnopencv.com/neural-networks-a-30000-feet-view-for-beginners/


Explaining Neural Networks

▶ The authors of this paper present a method to obtain human-understandable
explanations for the internal decision processes of neural networks

▶ Given a neural network whose predictions should be explained, the idea is to

▶ Identify a set of concepts from the respective domain that are constructive to or
related to the predicted concepts of the network, so that they can be used for
explanation

▶ Label part of the input data for the network with the identified concepts and train a
set of small mapping networks to predict the concepts from the neural activations of
the main network

▶ Use the predicted concepts of the main network and the predicted concepts from the
mapping networks to induce a logical theory that explains the network output in
terms of the mapped concepts



Methods



Overview

▶ The method consists of the following parts:

▶ A specification of the class of neural
networks taken into consideration

▶ A description of how to extract neural
activations and map them to predefined
concepts of interest

▶ A description of the logical language which
is used to represent the explanations of the
decision processes of the network

▶ A description of the induction framework
that is used to induce the logical theories
serving as explanations

Figure from Looking Inside the Black-Box: Logic-based Explanations for Neural Networks, Ferreira et al., 2022



Feed-forward Neural Networks

▶ General class of neural networks taken into consideration by the authors are
feed-forward networks

▶ These networks form directed acyclic graphs where information flows only in one
direction, from input to output

Figure from Neural Networks and Deep Learning, Nielsen, 2015



Layers and Composition

▶ Artificial neurons in a network N are grouped into layers where neurons within a
layer L are not connected to each other

N = (L1, . . . , Ld)

▶ Each layer L decribes a non-linear mapping between tensor spaces

L : IL → OL

▶ The computation of the network N is the function composition of its layers

FN (X) = Ld(Ld−1(. . . L2(L1(X)) . . .))



Neural Activations

▶ Elements of a layer’s output tensor represent the neurons and the values they take
on for some particular input are called the neuron’s activations

▶ Neural activations are computed as sums of input values weighted by learnable
parameters, followed by a non-linear function

Figure from Activation functions in artificial neural networks

https://hvidberrrg.github.io/deep_learning/activation_functions_in_artificial_neural_networks.html


Classification Networks

▶ Network N whose output can be used to predict whether a particular concept C
from a fixed set of predefined concepts CN is present in the input

▶ Allows to define prediction function

conceptN : ON × CN → {0, 1}

such that
conceptN (FN (X), C) = 1

indicates that concept C is predicted by network N to be present in the
corresponding input



Concepts and Labelling

▶ Each concept C ∈ CN for which the network N was trained is assumed to be
composed of or related to other concepts of interest

▶ The proposed method requires to
identify a set of concepts C that can
be used to explain the concepts CN

▶ Domain experts have to annotate part
of the training data for network N
with concepts C

Figure from Deep Learning and Convolutional Neural Networks lecture, Gemma Roig, 2020



Mapping Networks

▶ For each concept C ∈ C, a small classification network M is trained

▶ It predicts from the neural activations of the main network N , whether the
concept C was present in the input given to N

▶ Assuming an activation vector a ∈ Rk as input, we can define again a prediction
function

conceptM : OM → {0, 1}

such that
conceptM (FM (a)) = 1

indicates that concept C is predicted by the mapping network M to be present
in the input that generated the activations



Activation Selection

▶ The activations of the network N are given by the output values of its layers

(O1, . . . ,Od) ∈ OL1 × · · · ×OLd

▶ Using all activations as input to mapping networks M is computationally
intractable, due to large number of neurons

▶ Instead define binary selection masks S1, . . . ,Sd with elements in {0, 1} and same
shape as the output tensors and compute input to M as

a = vec(S1 ⊙O1, . . . ,Sd ⊙Od)

where ⊙ denotes the pointwise product

In practice, only the selected activations are kept and all others are discarded



Logical Language

▶ A logical language L is required that allows for the representation of concepts,
relations between concepts, and individuals

▶ The language L should be defined over concepts C ∪ CN , and a set of constants

cN = {cX|X ∈ IN}

representing individual samples from input domain of the network N

▶ Basic formulas are atoms C(c) with concepts C and individual c, asserting that
concept C is present in individual c

▶ A semantic consequence relation |= over the language L is assumed



Induction Framework

▶ An induction framework over (L, |=) is required for generating the theories
explaining the network concepts CN in terms of the concepts C

▶ The framework takes as background knowledge BK a set of atoms defined over
the concepts of interest C

▶ In addition it takes sets of positive and negative examples from the input domain
of the network N , defined as

Pos =
⋃

C∈CN

{C(cX)|X ∈ IN , conceptN (FN (X), C) = 1}

Neg =
⋃

C∈CN

{C(cX)|X ∈ IN , conceptN (FN (X), C) = 0}

Only those concepts in C are considered for which the accuracy of the mapping network M is sufficiently high



Inducing Hypotheses

▶ Task of the induction framework is to induce a hypothesis H ⊂ L

▶ A hypothesis is a set of formulas that satisfies

BK ∪H |= C(c), ∀C(c) ∈ Pos

BK ∪H ̸|= C(c), ∀C(c) ∈ Neg

▶ Thus we can express the concepts C ∈ CN in terms of the concepts C ∈ C in a
way that is consitent with the predictions of the main network N



Results



Synthetic Classification Tasks

▶ All experiments conducted are classification tasks over a synthetic image dataset

▶ Overall, the following experimental settings were explored:

▶ A proof of concept using a carefully selected set of predefined concepts C known to
be constructive of the classification concepts CN

▶ A test how well the proposed method performs when faced with concepts C at
different levels of abstraction

▶ A test how well the proposed method performs when faced with concepts C that are
insufficient to describe the decision processes of the network N

▶ A test how the accuracy of the mapping networks M affects the results

▶ An ablation study replacing the output of the mapping networks with concept
labels from the dataset



Dataset

▶ For all experiments, the synthetic XTRAINS images dataset was used

▶ Each sample is a 152× 152× 3 color image showing different sketched trains in
different positions in front of a colored background

▶ The dataset is accompanied by an onthology represented using description logics
providing definitions such as

Train ≡ ∃has.(Wagon ⊔ Locomotive)

Figure from Looking Inside the Black-Box: Logic-based Explanations for Neural Networks, Ferreira et al., 2022



Main Networks

▶ For all but the last experiment, three main networks MA, MB, and MC were
trained for classification

▶ Networks have different architectures but are all convolutional neural networks
with batch normalization, dropout, and pooling layers, where the final layers form
a fully-connected network

Figure from Does Artificial Intelligence dream of non-terrestrial techno-signatures?, De la Torre, 2019



Tasks

▶ The networks MA, MB, and MC were trained to identify a single concept each,
describing a particular type of trains

▶ The respective concepts TypeA, TypeB, and TypeC, are defined in terms of the
presence or absence of particular geometric features

▶ For example TypeA includes trains having either, a wagon with at least a circle
inside and a wagon with two walls in each side, or no wagons with geometric
figures inside them

▶ Top level definition in terms of the language describing the dataset’s onthology

TypeA ≡ WarTrain ⊔ EmptyTrain

In this case WarTrain and EmptyTrain are themselves defined in terms of simpler concepts



Training

▶ The main networks were trained on a subset of 25 000 images and evaluated on a
subset of 10 000 images from the XTRAINS dataset

▶ The mapping networks, which consist only of an input and output layer with
sigmoid activation, were trained on a balanced set of 800 images and evaluated on
a set of 1000 images

▶ All networks were trained using the Adam optimization algorithm with a learning
rate of 0.001 and the binary cross-entropy loss function

L = − 1

N

N∑
n=1

[tn ln(pn) + (1− tn) ln(1− pn)]

Here, N is the minibatch size, tn ∈ {0, 1} is the label, and pn ∈ (0, 1) is the normalized network prediction



Induction of Theories

▶ For the background knowledge BK of the induction framework, only concepts
were cosidered where the corresponding mapping network achieved an accuracy of
at least α = 90%

▶ As logical language, onthologies over description logics were used to allow for
comparsion with the dataset’s associated onthology

▶ As induction system, the DL-Learner framework was used, choosing an algorithm
that is biased to minimize the induced theory

Reference DL-Learner: Learning concepts in description logics, Lehmann, 2009



Evaluation Metrics

▶ For quantitative evaluation of the quality of the induced theories, two fidelity
measures FMain and FXTrains have been used

▶ FMain

Ratio of samples where the classifications of the main network coincide with those
obtained from the induced theory together with the knowledge obtained from the
outputs of the mapping networks

▶ FXTrains

Ratio of samples where the classifications of the XTRAINS labels (for the main
network’s output concepts CN ) coincide with those obtained from the induced
theory together with the knowledge obtained from the labels of the mapped
concepts (C)

Quotes from Looking Inside the Black-Box: Logic-based Explanations for Neural Networks, Ferreira et al., 2022



Proof of Concept

▶ For each main network MA, MB, and MC mapping networks for the
same set of 11 concepts C were trained

▶ As qualitative results, the following theories were induced

TypeA ≡ WarTrain ⊔ EmptyTrain

TypeB ≡ (FrightTrain ⊓ LongTrain) ⊔ (PassengerTrain ⊓ ¬EmptyTrain)

TypeC ≡ MixedTrain ⊔ RuralTrain

▶ The definitions of concepts TypeA and TypeC are equivalent to to those in the
dataset’s onthology, while the definition for TypeB is a subclass



Proof of Concept

▶ The experiment was conducted 20 times in total

▶ As quantitative results, the following averaged fidelity scores for the three main
networks MA, MB, and MC were obtained

Table from Looking Inside the Black-Box: Logic-based Explanations for Neural Networks, Ferreira et al., 2022



Complete Results

▶ For a synthetic classification task, the authors showed empirically

▶ That human-understandable explanations for the decision processes of neural
networks can be obtained by inducing logical theories based on concepts predicted
from the activations of a network

▶ That the method works for different levels of abstraction in the concepts that the
explanations are based on

▶ That the quality of the induced theories depends on the degree to which the selected
concepts are adequate for explaining the predictions of the network

▶ That the accuracy of the mapping networks is positively correlated with the quality
of the induced theories

▶ That mapping networks processing the activations of the main network are necessary
in order to properly reflect the inner decisions processes of the main network



Discussion



Limitations

▶ While the authors show that the proposed method can work, the results are
limited to a synthetic problem

▶ Since no experiments under realistic assumptions have been conducted, it is not
clear how generalizable the method is

▶ In order to be useful in practice, it has to work with far larger and more diverse
datasets and much more complex networks



Accuracy

▶ While the used dataset has the appearence of naturalistic
data, the features relevant for the performed classification
task lie on a very low-dimensional latent manifold and are
almost discrete

▶ This makes mapping into a separable space by the network
easy and allows for unrealistic high accuracies

▶ Since accuracy and quality of the results have been shown
to be positively correlated, it seems questionable whether
satisfying explanations can be obtained for many real-world
problems

Figure from Looking Inside the Black-Box: Logic-based Explanations for Neural Networks, Ferreira et al., 2022



Labelling

▶ The authors claim that only few data is necessary that has to be labelled by
domain experts for training the mapping networks with the concepts of interest

▶ The most powerful models for which interpretability would be desired the most,
are trained on such vast amounts of data, though, that attempting to define and
annotate with a sufficient number of concepts seems hopeless

Figure from LabelMe: A database and web-based tool for image annotation, Russel et al., 2008



Activation Selection

▶ The authors acknowledge that only a subset of neural activations can be used as
input to the mapping networks, for computational reasons

▶ But they don’t provide a strategy for selecting the activations for the input to the
mapping networks

▶ However, a poor choice of activations, missing the areas in the network where a
concept is encoded, will likely decrease the accuracy of the corresponding mapping
network significantly

▶ This in turn will have the concept removed from the background knowledge and
decrease the quality of the induced theories



Future Work

▶ In order for the proposed method to gain any traction, it is absolutely mandatory
that experiments under realistic assumptions are added

▶ Further analysis of the computational requirements of the method has to be
conducted and the aforementioned issues have to be addressed

▶ As indicated by the authors, exploring the possibility to induce probabilistic
theories based on the accuracy of the mapping networks could yield better
explanations of the inner workings of neural networks



Thank you for listening!



Further Results



Levels of Abstraction

▶ Further experiments were performed to asses the quality of the induced theories
when high-level or low-level concepts C were used for explanation

▶ Train-level concepts:

{EmptyTrain,LongFreightTrain,

MixedTrain,PassengerTrain,RuralTrain,WarTrain}

▶ Wagon-level concepts:

{∃has.EmptyWagon, ∃has.FreightWagon,

∃has.LongWagon, ∃has.(LongWagon ⊓ PassengerCar), . . .}



Levels of Abstraction

▶ Qualitatively, the induced theories from the train-level concepts were logically
equivalent to the definitions in the dataset’s onthology

▶ Regarding the wagon-level concepts, the induced definition for TypeB was a
subclass of the onthology’s definition, while the other definitions were neither
subclasses nor superclasses to the corresponding definitions in the dataset’s
onthology



Levels of Abstraction

▶ The experiment was again conducted 20 times in total

▶ As quantitative results, the following averaged fidelity scores for the three main
networks MA, MB, and MC were obtained

Table from Looking Inside the Black-Box: Logic-based Explanations for Neural Networks, Ferreira et al., 2022



Insufficient Concepts

▶ Choosing concepts C that are insufficient to describe the concepts CN of the main
networks should result in lower quality theories

▶ Otherwise the previously obtained results could be attributed to spurious
correlations in the data rather than accurate descriptions of the main network’s
decision process in terms of the concepts C

▶ For this test, 20 random sets of 5 concepts among all concepts defined in the
XTRAINS ontology were used to define C

▶ As expected by the authors, the average fidelity scores dropped significantly to

FMain = 72.6% FXTrains = 71.9%



Insufficient Concepts

▶ The experiment was again conducted 20 times in total

▶ As quantitative results, the following averaged fidelity scores for the three main
networks MA, MB, and MC were obtained

Table from Looking Inside the Black-Box: Logic-based Explanations for Neural Networks, Ferreira et al., 2022



Accuracy of the Mapping Networks

▶ Another experiment was performed to test whether the quality of the resulting
theories mostly depends on the accuracy of the mapping networks

▶ The same set of 11 concepts as in the initial experiment was used to induce
theories while varying the amount of data used to train the mapping networks
between 50 and 1200 samples

▶ The amount of data used to induce the theories remained constant at 3000
samples



Accuracy of the Mapping Networks

▶ Again a subset Cα ⊂ C of concepts was used for which the respective mapping
networks achieved an accuracy of at least α = 90%

▶ A Pearson’s correlation test on fidelity FMain and the average accuracy of the
mapping networks yielded a strong positive correlation of r = 0.8161 with a
p-value of p < 0.0001

▶ This indicates that when the mapping networks’ accuracy increases, the quality of
the induced theories increases as well



Ablation Study

▶ In order to assess whether the mapping networks are necessary to induce theories
explaining the actual decision processes of a main network, an ablation study was
conducted

▶ The mapping networks were removed from the procedure and instead of their
predicted labels, fixed labels from the dataset were used for inducing logical
theories

▶ For this experiment, the XTRAINS dataset was augmented and a new task was
constructed



Dataset Augmentation

▶ The XTRAINS images were augmented to include four traffic signals in varying
top left, top right, bottom left, and bottom right positions in the image

▶ A traffic signal is said to be on if it contains any symbol in it

▶ The images in the dataset are labelled with concepts

{On, TopLeftOn, TopRightOn, BottomLeftOn, BottomRightOn}

Figure from Looking Inside the Black-Box: Logic-based Explanations for Neural Networks, Ferreira et al., 2022



Classification Task

▶ The dataset is defined such that if one of the top signals is on, then also one of
the bottom signals, and vice versa

▶ A main network is tasked to predict the concept On, which is present in an image,
if any of the signals is on

▶ By construction of the dataset, for predicting the concept, it is sufficient for a
network to either look at the top or bottom signals

▶ For this experiment, 50 main networks with an accuracy of at least 90% were
trained



Comparsion

▶ When using the dataset labels for inducing the theories over the main networks
predictions, always the same theory was obtained

On = BottomLeftOn ⊔ BottomRightOn

▶ Conducting the same experiment with labels from trained mapping networks, the
obtained theories were much more diverse

▶ 22% of the main networks learned to classify their outputs just by considering
whether the two top signals were on while 42% looked at the two bottom signals

▶ This suggests that the mapping networks are necessary in order to reflect the
actual decision processes of the main network

For label based theory, the choice is due to the determinsim of the DL-Learner framework



Thank you for listening!
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