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Abstract

A core problem of machine learning algorithms based on artificial neural networks is
the lack of interpretability of these models. For many applications it is important to
understand the reasoning behind the decisions made by an algorithm, but the inner
workings of neural networks are generally opaque, leading to the notion of a black-
box model. The hypothesis of the reviewed work is that human-understandable
explanations of decision processes in neural networks, formulated as logic-based
theories, can be obtained by mapping neural activations to semantic concepts that
are used in these theories. The authors propose a procedure using a set of small
networks to perform the mapping and an inductive reasoning framework to obtain
the theories. It is empirically shown that for a synthetic classification task, the
proposed procedure is able to generate logical theories, which are consistent both
with existing theories for the task and with the predictions of the classification
network, providing evidence that the induced theories describe the actual decision
processes of the network on a human-understandable level. While being applicable
to a broad class of machine learning algorithms based on neural networks in theory, it
remains to be seen whether the approach can be used as a general tool for describing
decision processes of neural networks for real world problems, since there remain
significant challenges that have to be addressed in future work.

∗ João Ferreira, Manuel de Sousa Ribeiro, Ricardo Gonçalves, João Leite, 2022.
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1 Introduction

This paper review is part of a seminar work. All included figures and tables are taken
from the original paper [4].

1.1 Problem Statement

In the last decade, methods of artificial intelligence have seen an unprecedented rise in
populartity. In particular, the development of increasingly powerful machine learning
models that are based on artificial neural networks has enabled significant breakthroughs
in various fields. However, while applications relying on artificial neural networks have
become almost ubiquitous, a crucial challenge has arised, namely the lack of transparency
and interpretability of these models.

For many applications in critical domains, such as medical diagnosis or autonomous
driving, it is of utmost importance to understand the inner decision processes of the used
algorithms. The ability to comprehend why a system arrives at a particular conclusion
is essential for fostering trust, accountability, and ethical use of these technologies. This,
however, contrasts with the inherent complexity and black-box nature of artificial neural
networks.
Neural networks used for practical applications typically contain numerous layers with

millions to billions of interconnected nodes, performing complex nonlinear computations
on a purely numerical, subsymbolic level. This makes it extremely difficult for humans to
understand how inputs are transformed into outputs. While several methods have been
developed that shed some light on the inner workings of neural networks, they typically
do not provide comprehensive explanations of the decision processes of a network that
are understandable to end users, but merely provide some values for contribution to
the network output for particular features in the input, or corresponding intermediate
representations.

1.2 Approach

The authors of the reviewed paper propose a novel approach that allows to generate
structured explanations for the decision processes of a neural network, formulated in
logical languages, using human-understandable semantic concepts.
The idea is to first have domain experts annotate part of the input to a network of

interest, with labels corresponding to concepts that are assumed to be constructive to
the concepts that the network has been trained to predict, such that the predictions of
the network could be explained in terms of these concepts. As an example, for a network
trained to predict whether a bike is present in an image, the concept of wheel could be
added under the assumption, that the decision whether an images contains a bike is
based on whether wheels are present in the image.
In the second step, a set of small neural networks is trained to predict these added

concepts from the neural activations of the main network. In particular, for each of the
added concepts, a mapping network is trained to predict from the extracted activations
whether the corresponding concept was present in the input that has generated these
activations, thus relating the computations performed by the network of interest to the
predefined concepts.
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The final step is to use the predictions of the main network and the predictions of the
mapping networks for a set of inputs to induce a logical theory that provides definitions
of the predicted concepts of the main network in terms of the concepts predicted by the
mapping networks. Since the definitions are formulated using human-understandable
sematic concepts, they provide accessible explanations for the predictions of the main
network.

2 Methods

The goal is to induce logic-based theories for predictions of neural networks based on
concepts derived from the network’s neural activations. Hence, the description of the
procedure proposed in the reviewed work consists of the following steps: A specification
of the class of networks taken into consideration, a description of the procedure to map
network activations to concepts, and a description of how logical theories are induced
from these concepts. These are provided in the following subsections. Figure 1 gives an
overview over the proposed method.

Figure 1: Architecture of the proposed method.
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2.1 Neural Networks

The general class of neural networks taken into consideration by the authors is the class
of feed-forward neural networks, which encompasses the majority of networks that are
used in practice. The common characteristic of these networks is that the connections
between the neurons form a directed acyclic graph. In these networks, information flows
only in one direction, from input to output, without feedback loops. For computational
reasons, neurons are almost always grouped in layers, such that the neurons within a
layer are not connected to each other. Hence, the global structure of such a network can
be described as a sequence of layers

N = (L1, . . . , Ld), (1)

where each layer L describes a nonlinear mapping from some input tensor space IL to
some output tensor space OL, and the output of one layer is the input to the next. The
elements of a layer’s output tensor represent the neurons, and the values they take on
for some particular input are called the activations of the neurons.
The inner structure of the layers is dependent on the architecture of the network,

which is relevant for the implementation, but not for the conceptual description of the
methods developed in the reviewed work. However, a common pattern is that each layer
includes at least a linear projection that is followed by a nonlinear activation function,
which is applied elementwise and produces the neural output [10].
Some particularities not mentioned explicitly by the authors when introducing their

formalism to describe neural networks are the presence of special purpose layers often
included for normalization or regularization, but these layers can be readily subsumed
under the given definition, being regarded simply as components of the parametric layers
of the network.
A classification network N is defined as a network whose output can be used to predict

whether a particular concept C from a fixed set of predefined concepts CN is present
in the corresponding input to the network. More formally, let IN = IL1 be the input
space and ON = OLd be the output space of N . Furthermore, let FN : IN → ON be the
composition of the layers L in N . Then we can define a function

conceptN : ON × CN → {0, 1} (2)

such that conceptN (FN (X), C) = 1 indicates that the concept C ∈ CN is predicted
by the network to be present in the input X ∈ IN . Hence, the classification task with
respect to a particular concept is a binary decision problem with a concept either being
identified by the network or not.

2.2 Extracting Concepts from Neural Networks

The core idea of the proposed method is to have domain experts annotate input data
to the main classification network N with a set of concepts C, which are assumed to be
relevant for the concepts CN that the main network has been trained to predict. For each
of the concepts C ∈ C, a small mapping network MC is trained to predict the concept
from extracted activations of N . For a given training dataset, the outputs of the main
network N and the mapping networks MC are then given to an inductive reasoning
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framework to induce theories for the concepts CN in terms of the concepts C, thereby
providing interpretable explanations for the main network’s predictions.
The mapping networks MC are themselves feed-forward classification networks as

described in the previous subsection. However, in contrast to the main network N ,
which is assumed to be trained to predict a larger set of concepts CN , each mapping
network is associated only with a single concept C ∈ C. That is, each mapping network
takes a set of activations and predicts whether the associated concept is present in the
input that generated these activations.
Since the input to the mapping networks are the activations of the main network

N , the proposed method requires access to this network’s intermediate activations. The
neural activations of a network N are obtained by computing FN (X) for an inputX ∈ IN
and extracting the corresponding output tensors from each layer of the network. That
is, the activations are given by an ordered list of tensors

(O1, . . . ,Od) ∈ OL1 × · · · ×OLd . (3)

Since the total number of activations of the main network N will in all but the most
trivial cases be far too large to be processed by a mapping network in its entirety, a
mechanism is required to select only a subset of the extracted activations. The decision
which activation values to keep and which values to discard can be expressed in terms of
tensors S1, . . . ,Sd, which are binary masks with elements in {0, 1}, and have the same
shape as the output tensors extracted from the network. The selection of activations for
a particular mapping network can thus be described as

(S1 ⊙O1, . . . ,Sd ⊙Od), (4)

where ⊙ denotes the Hadamard product, that is the pointwise product of its operands.
Since each element in a mask S is either one or zero, the multiplication either retains or
discards the corresponding activation from the output tensor O.
A further restriction compared to the general classification network class is that the

mapping networks are assumed to operate on vector input. Thus, instead of taking
the ordered list of subsampled network activation tensors directly as their input, it is
assumed that there exists a vectorization function that maps the tensors into a real
vector space. The input for a particular mapping network is therefore given by

vec(S1 ⊙O1, . . . ,Sd ⊙Od). (5)

However, while the introduced notation is convenient, it does not properly reflect how
the input for the mapping networks is actually computed. Given the above notation, the
size of the input to the mapping networks would still be equal to the number of neurons
in the network that generated the activations, with some values just having been set to
zero. Practically, the input size is equal to the number of activations retained by the
mask, though.
An input of a mapping network MC is thus given as a vector from IM ⊆ Rk where k

is the number of selected activations. Since the network is used only to predict a single
value, we may define the output space as OM = [0, 1], which can be achieved by using
the standard logistic function as the activation function for the final layer, in machine
learning context known as the sigmoid function and defined as
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σ(x) =
1

1 + e−x
. (6)

In complete analogy to the definitions given for the main classification network, we
can define a function FM : IM → OM to compute the forward pass through a particular
mapping network as the composition of the layers in the network. Moreover, we can
define a function

conceptM : OM → {0, 1} (7)

such that conceptM (FM (vec(S1 ⊙O1, . . . ,Sd ⊙Od))) = 1 indicates that the concept
associated with the mapping network is predicted from the activations in N , which can
be achieved simply by checking whether the output value of the network is above or below
0.5. During training of the mapping network, the output of this function is compared
to the labels that have been annotated to a subset of the overall training data for N
by domain experts in a supervised fashion. During inference, the output is the label
assigned to each data point in the larger dataset to be used by the inductive reasoning
framework.
It is worth pointing out that the forward pass for each mapping network MC includes

a full forward pass through the main classification network N , necessary to generate the
neural activations. This is true both for the inference and the training phase. Despite
computing a full forward pass through N , the training is restricted to the parameters of
the mapping network MC , though. The parameters of the main classification network
N are not altered in the process.

2.3 Inducing Logical Theories from Neural Networks

Given a main classification network N over a set of concepts CN , a collection of trained
mapping networks MC for concepts C, relevant for the domain of N , the two remaining
components of the method are a logical language that can be used to describe theories
for CN in terms of C, and an induction framework which creates these theories from
the concepts and individuals of the domain. In order to ensure a broad applicability
of the method, only few requirements are formulated for the logical language and the
corresponding induction framework.

In particular, a logical language L is only required to allow for the representation of
concepts, relations between concepts, and knowledge specific to the individuals of the
domain of interest. It is assumed that the used language L is defined over the union of
the concept sets CN and C, and a set of constants

cN = {cX|X ∈ IN}, (8)

which in logical language terms are the individuals, corresponding to the samples
from the input domain of the main network N . The language L should include as basic
formulas atoms of the form C(c), where C is a concept and c an individual, asserting
that c is an instance of C. In addition it is assumed that there is a semantic consequence
relation |= defined over the language L. The semantic consequence relation allows the
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inductive framework to induce an hypothesis, a set of formulas which is consistent with
the main network’s predictions and the concepts predicted from its activations.

The induction framework over (L, |=) consists of three components. The background
knowledge BK is the set of atoms defined over the concepts C, restricted to a subset Cα ⊆
C that only includes those concepts C ∈ C for which the accuracy of the corresponding
mapping network MC is higher than the threshold α. It contains the atoms C(cX) where
for concept C and individual cX, corresponding to input X, the mapping network MC

has predicted that C is present in X. The two other components of the framework are
sets of positive and negative examples from the input domain of N defined as:

Pos =
⋃

C∈CN

{C(cX)|X ∈ IN , conceptN (FN (X), C) = 1} (9)

Neg =
⋃

C∈CN

{C(cX)|X ∈ IN , conceptN (FN (X), C) = 0} (10)

The inductive framework then has the task to induce a hypothesis H ⊆ L such that
for all C(c) ∈ Pos holds that BK ∪ H |= C(c) and for all C(c) ∈ Neg holds that
BK ∪H ̸|= C(c).

3 Results

All experiments described in the reviewed work are classification tasks using a synthetic
image dataset. After an initial proof of concept, additional results were obtained using
different levels of abstraction in the concepts C defined to explain the main network’s
predictions, and using concepts C that are insufficient to describe the network’s decision
processes. It was tested how the accuracy of the mapping networks affects the quality
of the induced theories, and an ablation study was conducted, replacing the output
of the mapping networks with the labels added to the training data. In the following
subsections, the dataset, the used networks, and the performed experiments are described
in more detail.

3.1 Experimental Setting

The XTRAINS dataset [3] that was used throughout all experiments consists of 152×152
pixel color images, depicting sketched trains in front of colored backgrounds, such as
those in figure 2. The trains vary in position, number and shape of wagons and wheels,
and other geometric shapes. In addition, noise was added in form of missing pixels in the
train’s representation. The dataset is accompanied by an onthology represented using
description logic, providing definitions such as

Train ≡ ∃has.(Wagon ⊔ Locomotive). (11)

For all but the last experiment, three main networks MA, MB, and MC were trained
for binary classification, which possess different architectures, but are all convolutional
neural networks, using convolutional, batch normalization [7], pooling, and dropout [6]
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Figure 2: Example images from the XTRAINS dataset.

layers, with the final layers of the networks being fully-connected layers. These networks
were trained to identify a single concept each, describing a particular type of train, using
a subset of 25.000 training images from the XTRAINS dataset. The respective concepts
TypeA, TypeB, and TypeC, are defined in terms of the presence or absence of particular
geometric features. All networks achieved an accuracy of about 99% on a held out test
set of 10.000 images.

The mapping networks that were trained for the performed experiments are shallow
networks consisting only of an input and an output layer. These networks were trained
on an annoteted subset of 800 images from the XTRAINS dataset and testet on a
subset of 1000 images, except for the second to last experiment, where the size of the
training datasets is varied between 50 and 1200 images. For inducing logical theories,
only concepts have been taken into consideration for which the corresponding mapping
network achieved at least α = 90% accuracy.
All networks were trained using the Adam optimization algorithm and the binary

cross-entropy loss function, which is defined as

L = − 1

N

N∑
n=1

[tn ln(pn) + (1− tn) ln(1− pn)] (12)

where N is the minibatch size, tn ∈ {0, 1} is the label, and pn ∈ (0, 1) is the normalized
network prediction. A learning rate of 0.001 was used for training. Early stopping with
a patience value of 20 for the mapping networks and 30 for the main networks was used
to prevent overfitting.
As logical language, onthologies over description logics [1] were used to allow for

direct comparsion with the dataset’s associated onthology, and as induction system, the
DL-Learner framework [9] was used, where an algorithm was chosen that is biased to
minimize the induced theory. Across all experiments, for inducing the theories, a set of
3.000 images was used, and a set of 1 000 samples for testing.
For quantitative evaluation of the quality of the induced theories, two fidelity measures

FMain and FXTrains have been used. According to the authors of the paper, FMain is
computed as the ratio of samples where the classifications of the main network coincide
with those obtained from the induced theory together with the knowledge obtained from
the outputs of the mapping networks, and FXTrains is computed as the ratio of samples
where the classifications of the XTRAINS labels (for the main network’s output concepts
CN ) coincide with those obtained from the induced theory together with the knowledge
obtained from the labels of the mapped concepts C.
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3.2 Inducing a Main Network’s Theory

For each main network MA, MB, and MC , mapping networks were trained for the
same set of 11 concepts C, which are assumed to be constructive for the types of trains
the main networks were trained to predict. As qualitative results, the following theories
were induced:

TypeA ≡ WarTrain ⊔ EmptyTrain (13)

TypeB ≡ (FrightTrain ⊓ LongTrain) ⊔ (PassengerTrain ⊓ ¬EmptyTrain) (14)

TypeC ≡ MixedTrain ⊔ RuralTrain (15)

The induced definitions of concepts TypeA and TypeC are equivalent to to those in
the dataset’s onthology, while the induced definition for TypeB is a subclass, meaning
that any individual sample considered to be of TypeB by the induced theory would also
be considered of this type according to the dataset’s onthology.
The results reported above represent the mode of 20 repetitions of the experiment,

where on average only 3 of the 11 concepts where used to define each of the types. The
averaged fidelity scores obtained for the 20 runs are reported in the table in figure 3,
showing that the induced theories are very much consistent both with the networks
predictions and the XTRAINS labels.

Figure 3: Fidelity scores for initial experiment.

3.3 Levels of Abstraction

The second experiment was a test how well the proposed method performs when faced
with concepts C at different levels of abstraction. For the comparsion, a set of high-level
concepts and a set of low-level concepts have been defined. In particular, the following
concepts on the train level were used

{EmptyTrain,LongFreightTrain, (16)

MixedTrain,PassengerTrain,RuralTrain,WarTrain} (17)

as well as complex concepts on the wagon level, which, for the given classification task,
were treated as atomic concepts. Examples for these concepts are

{∃has.EmptyWagon,∃has.FreightWagon, (18)

∃has.LongWagon,∃has.(LongWagon ⊓ PassengerCar)}. (19)
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As qualitative results, the induced theories from the train-level concepts were found
to be logically equivalent to the definitions in the dataset’s onthology. Regarding the
wagon-level concepts, the induced definition for TypeB was a subclass of the onthology’s
definition, while the other definitions were neither subclasses nor superclasses to the
corresponding definitions in the dataset’s onthology.
The experiments were repeated 20 times again. The table in figure 4 summarizes

the obtained average fidelity scores, which exhibit only slightly decreased values for
the wagon-level concepts, while the 100% FXTrains scores obtained for the train-level
experiments reflect the logical equivalence to the definitions in the onthology. The results
suggest that the proposed method is able to induce high-quality theories for concepts
with different levels of abstraction.

Figure 4: Fidelity scores for different levels of abstraction.

3.4 Insufficient Concepts

Choosing concepts C that are insufficient to describe the concepts CN , which the main
network was trained to predict, should result in lower quality theories. In order to
rule out the possibility that the previously obtained results are attributed to spurious
correlations in the data rather than accurate descriptions of the main network’s decision
process in terms of the concepts C, another experiment was conducted, using 20 sets of
5 random concepts from the dataset’s onthology to define C.
As expected by the authors, the fidelity scores dropped significantly compared to the

previous experiments. The table in figure 5 summarizes the results obtained in 20 runs
of the experiment.

Figure 5: Fidelity scores for insufficient concepts.
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3.5 Theory Induction’s Cost

Another experiment was performed to test whether the quality of the resulting theories
mostly depends on the accuracy of the mapping networks. The same set of 11 concepts
as in the initial experiment was used to induce theories while varying the amount of data
used to train the mapping networks between 50 and 1200 samples. The amount of data
that was used to induce the theories remained constant across all trials at 3000 samples.

A Pearson’s correlation test on fidelity FMain and the average accuracy of the mapping
networks yielded a strong positive correlation of r = 0.8161 with a p-value of p < 0.0001.
This indicates that when the mapping networks’ accuracy increases, the quality of the
induced theories increases as well.

3.6 Importance of the Mappings

The last experiment documented in the reviewed work was an ablation study where
the mapping networks were removed from the procedure and instead of their predicted
labels, fixed labels from the dataset were used for inducing logical theories. This test
was included to assess whether the mapping networks are necessary to induce theories
explaining the actual decision processes of a main network.
For this experiment, the XTRAINS dataset was augmented and a new classification

task was constructed. In particular, the images in the dataset were augmented to include
four traffic signals in varying top left, top right, bottom left, and bottom right positions
in the image, such as in the images in figure 6. A traffic signal is said to be on if it
contains any symbol in it. The images in the dataset are labelled with concepts

{On, TopLeftOn, TopRightOn, BottomLeftOn, BottomRightOn}. (20)

The dataset is defined such that if one of the top signals is on, then also one of the
bottom signals, and vice versa. A main network is tasked to predict the concept On,
which is present in an image, if any of the signals is on. By construction of the dataset,
for predicting the concept, it is sufficient for a network to either look at the top or
bottom signals. For this experiment, 50 main networks with an accuracy of at least 90%
were trained.

Figure 6: Augmented images including signals.

When using the dataset labels for inducing the theories over the main networks pre-
dictions, always the same theory was obtained, that is
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On = BottomLeftOn ⊔ BottomRightOn. (21)

Conducting the same experiment with labels from trained mapping networks, the
obtained theories were much more diverse. 22% of the main networks learned to classify
their outputs just by considering whether the two top signals were on while 42% looked
at the two bottom signals. This suggests that the mapping networks are necessary in
order to reflect the actual decision processes of the main network.

4 Discussion

While the authors of the reviewed work have shown empirically that the proposed method
can work, results have been obtained only for a synthetic classification task, raising the
question how well the method generalizes to real world problems.
In particular, the synthetic XTRAINS dataset used in all experiments does not reflect

the properties of naturalistic image data used in practice, despite being constructed
to have this appearance. The data that is actually relevant for the classification task
lies on a comparatively low dimensional latent manifold, and the features are almost
discete, such that finding a separable space is rather trivial. This is documented by the
unrealisticly high accuracies that were obtained in the performed experiments. Given
that accuracy appears to be a crucial factor for the quality of the induced theories, it
is doubtful whether comparable results can be obtained for more complex problems,
where accuracy is typically significantly lower. The lack of results under more realistic
assumptions makes it hard to assess the applicability of the method in practice.
In addition, there are two particular issues to consider that could restrict the scalability

of the method. The problem of manually labelling parts of the data and the problem of
selecting subsets of neural activations to serve as input for the mapping networks. These
problems are discussed in more detail in the two following subsections.

4.1 Labelling Problem

The authors of the reviewed work conclude that the main cost of their method is the
labelling of the data to train the mapping networks MC . Assuming that this was true,
this cost alone might still be too high to make the method applicable to many, if not
most problems encountered in practice.
There are two main difficulties with labelling the data. First of all, even if we assume

that for each concept C ∈ C, only a fairly limited amount of labelled training data is
required, the number of concepts relevant to explain all concepts CN , that the main
network N has been trained to recognize, can still be too large to allow for manual
annotation. In addition, finding suitable concepts C for explaining the concepts in CN
can itself be a non-trivial and prohibitively time consuming task, even for experts of the
respective domains.
We observe that state of the art neural network models are typically trained on very

large amounts of high dimensional, very diverse and often also multimodal data, which
enables them to recognize thousands or even millions of different concepts. Moreover,
many advanced models exhibit significant zero-shot capabilities, allowing them to predict
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concepts during inference that have not been part of the original training data at all.
For these kind of models, manually labelling enough data to allow for the induction of
high quality theories, for all of the concepts that the network might predict, seems to be
hopeless.

Hence, unless some form of automated labelling can be applied, the proposed method
will likely be applicable only in very restricted settings, like particular cases of medical
diagnosis or specialized applications in manufacturing environments, where the number
of relevant concepts is limited and sufficient domain knowledge is available.

4.2 Selection Problem

A major issue with the approach introduced in the reviewed work, which is not addressed
by the authors, is the problem of selecting the set of neural activations from the main
network N , that should be used as input to a particular mapping networkMC . While the
authors acknowledge that taking the entire set of activations as input is computationally
intractable, due to the large number of neurons in networks used in practice, they do
not provide a strategy for how to choose the network activations to predict a predefined
concept from. This is a severe limitation, since an unfavorable choice of the activation
values will likely degrade the performance of the mapping networks below an acceptable
threshold, removing the corresponding concepts from the background knowledge that is
used for inducing the theories over the predictions of N .
As an example, consider a deep neural network trained for image classification, and

a particular input image, depicting an airplane, which shall be one of the concepts CN
that the network was trained to recognize. Now, a domain expert might have come to
the conclusion that ’wing’ is a concept of interest. Hence a mapping network should
be trained to predict this concept from the activations of the main network, and we’re
tasked to define a selection of network activations that is used as input to that mapping
network.
A well-known property of deep neural networks and one of the foremost reasons for

their ability to learn difficult tasks in an end-to-end fashion, is that they learn concepts
in a hierarchical manner. That is, while early layers in the network recognize simple
concepts, subsequent layers recognize increasingly abstract concepts that are composed of
the simpler concepts recognized by previous layers. Analogous to the processes performed
by the ventral stream of the visual cortex, as an instantiation of the property described
above, deep neural networks trained for vision tasks encode a hierarchy of visual concepts
across their layers, where the first few layers learn to recognize graphical primitives
like lines, curves, and simple patterns, while deeper layers learn increasingly complex
shapes [8].
Taking this into consideration, choosing a subset of activations from the first layer of

the classification network to predict the concept ’wing’ will likely be a suboptimal choice.
While the complex concept ’wing’ is correlated with the presence of certain graphical
primitives, in the general case, there will be no clear causal relationship between the
activations of the neurons in the first layer and this particular concept, because the
concept itself is encoded in deeper layers and the graphical primitives it is composed of
could also belong to different complex objects, like for example a conference table or a
canopy. Hence, it can be expected that in general, the accuracy of the mapping network
will not be sufficient for the concept to be included in the theories that are meant to
explain why the network recognizes an airplane or not.
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Unfortunately, while constructing a counterexample like this is relatively easy, the
inverse problem of finding the areas of a network that encode a particular concept is
much harder, and might be of the same order as the problem that the proposed method
is meant to solve.
In particular, the search space increases when the size of the main network increases

and the predefined input size to the mapping networks decreases. While neural networks
used for complex real world applications will grow to large sizes, it is desirable to restrict
the input size to the mapping networks for computational reasons, thus requiring more
precise estimates of where in a main network the concepts of interest are encoded. Given
the potentially large discrepancy between the total amount of neurons in the network
of interest and the limited size of the selected subsets, such estimates likely cannot
be obtained just by utilizing the general knowledge about hierarchical representations
in deep neural networks, but demand a thorough investigation of the network whose
decision processes we aim to explain.
To make matters worse, most tools developed to relate neural activations to particular

concepts cannot be used in this case, because the concepts C that are predicted by the
mapping networks are precisely the concepts that are not included in the main network’s
output. Hence, neither occlusion experiments [14] nor gradient based methods [5, 11,
12] developed to relate neural activations to concepts learnt by the main network are
applicable, since there is no known outcome for these concepts that can be traced back
to the respective areas of interest.
Now, it seems reasonable to assume that more powerful mapping networks could

compensate to some degree for suboptimal choices of neural activations, being able to
find patterns unique to particular concepts even from regions of the main network that
are only weakly correlated to the respective concepts. That means, there is probably a
tradeoff between the computational complexity required for the training of the mapping
networks and the required accuracy of the selections. However, this could easily push
the computational cost beyond the threshold that is deemed acceptable for a particular
application. Moreover, this approach could also introduce false assumptions about the
actual computations in the main network.
One way to reduce the search space could be to take into account the receptive fields

of the neurons in the main network. The receptive field of a neuron is the area of
the input that affects the neuron’s activation, or, in other words, the part of the input
that the neuron can see. In many network architectures used in practice, the size of the
receptive field is fixed and positively correlated with the depth of the layer where a neuron
resides. Neurons in early layers can only see a small portion of the entire input, while
neurons in deeper layers can see larger parts. While some of the most advanced network
architectures use receptive fields that are adaptive to the input data [2, 13], making it
more difficult to determine the area of the input that affects particular neurons, in many
settings it will be possible to discard neurons from the selection in an automated way,
given that the input is annotated such that the location of a concept is known. This,
however, will again increase the cost of labelling the data, and might not always be
possible.
To summarize, while the authors provided empirical results relating the mapping

network’s accuracy to the quality of the induced theories, it would have been equally
important to investigate the relationship between the selection of neural activations and
the accuracy of the mapping networks.
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4.3 Future Work

In order for the proposed method to gain any traction, it is absolutely mandatory to
test it in a realistic setting. Even for a proof of concept paper, where initial tests on
synthetic data can be reported, it would have been highly desired that at least one test
under realistic assumptions was included, using a common benchmark dataset. This is
a shortcoming that must be made up for in future work.

Besides that, the concerns raised in the previous subsections should be addressed,
which could also involve some further development of the method that was suggested
by the authors themselves, namely to change the method such as to induce probabilistic
theories based on the accuracies of the mapping networks.
This approach could also be extended for automated labelling of data with concepts

to be learnt by the mapping networks, which as seen above, will likely be a requirement
for many real world applications. The benefit would be that probabilistic models of the
main networks decision processes would also allow to explicitly handle the inevitable
error that is introduced by using other neural networks to perform the labelling at the
initial stage.
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