

Logikbasierte Systeme der Wissensverarbeitung

Allens Zeitintervalllogik

Prof. Dr. M. Schmidt-Schauß

SoSe 2022

Stand der Folien: 31. Mai 2022

Schließen über Zeit

GOETHE UNIVERSITÄT

- Darstellung und Inferenzen für zeitliche Zusammenhänge
- Viele verschiedene Logiken
- z.B. Modallogiken und Temporallogiken.
 Diese sprechen über Ereignisse in der Zukunft /
 Vergangenheit und haben Existenzquantoren und haben oft exakte Zeitdauern.

Wir betrachten die

Allensche Intervall-Logik

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

2/66

Beispiel: Käse-Sahne-Kuchen backen

www.uni-frankfurt.de

Zeitliche Zusammenhänge

- Aktionen entsprechen (nicht-leeren) Zeitintervallen
- Wissen: Anforderungen an die relative Lage der Intervalle
- Wie kann man dieses Wissen repräsentieren?
- Und wie daraus Schlüsse ziehen?

Beispiele

Zutaten

besorgen

zubereiten

vor

während

Teig zub.

Welche Schlüsse lassen sich daraus ziehen?

GORTHUH ET UNIN EWISK SÄTÄT

• Neue Beziehungen zwischen Aktionen

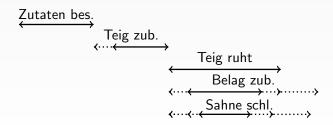
Darf der Belag vor dem Teig in die Form?

• Modell: Anordnung der Intervalle, die alle Beziehungen erfüllt

Wie gelingt der Kuchen?

Konsistenz: Gibt es ein Modell?

Kann man den Kuchen überhaupt backen?



M. Schmidt-Schauß \cdot KI \cdot SoSe 2022 \cdot Allens Zeitlogik

6/66

GOETHE GUNIVERSITÄT Teig ruht Teig ruher direkt nach Teig zub. lassen während. Sahne schl. Sahne aber vorher schlagen endend Belag zub. beginnt Belag Teig ruhen

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

5/66

Allensche Intervalllogik

James F. Allen:

Maintaining knowledge about temporal intervals

Communications ACM, 1983

Keine Darstellung von Zeitpunkten, sondern:

- Darstellung von Zeitintervallen
- ohne Absolutwerte (weder von wann bis wann noch wie lang)
- sondern: nur die relative Lage von Intervallen

Formeln und Basisrelationen

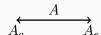
Allensche Formeln:

$$F ::= (A \ r \ B) \mid \neg F \mid F_1 \lor F_2 \mid F_1 \land F_2$$

wobei

- \bullet A, B sind Intervallnamen
- r ist eine der Allenschen Basisrelationen

Basisrelationen: Gegeben zwei nichtleere reellwertige Intervalle:



- ullet Wie können A und B zueinander liegen?
- Wieviele Möglichkeiten gibt es?

Allensche Basisrelationen

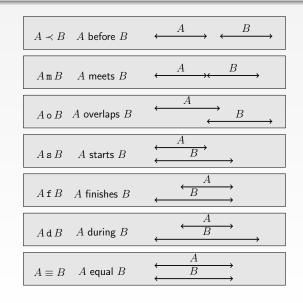
Bedingung	$Abk\ddot{u}rzung$	Bezeichnung
$A_e < B_a$	\prec	A before B
$A_e = B_a$	m	A meets $\mathsf B$
$A_a < B_a < A_e < B_e$	О	A overlaps B
$A_a = B_a < A_e < B_e$	s	A starts B
$B_a < A_a < A_e = B_e$	f	A finishes B
$B_a < A_a < A_e < B_e$	d	A during B
$B_a = A_a, A_e = B_e$	=	A equal B

- und inverse Relationen (ohne \equiv)
- ullet Inverse: $reve{r}$ ist inverse Relation zu r
- Ausnahmen:
 - \bullet \succ inverses zu \prec
 - und $\equiv = \check{\equiv}$

M. Schmidt-Schauß \cdot KI \cdot SoSe 2022 \cdot Allens Zeitlogik

9/66

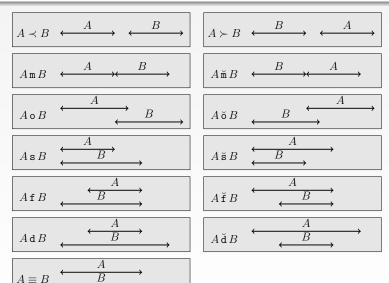
Allensche Basisrelationen, Teil 1



M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

10/66

Alle Allensche Basisrelationen



Allensche Basisrelationen

Allensche Basisrelationen

Die 13 Allenschen Basis-Relationen sind:

$$\mathcal{R} := \{ \equiv, \prec, \mathtt{m}, \mathtt{o}, \mathtt{s}, \mathtt{d}, \mathtt{f}, \succ, \breve{\mathtt{m}}, \breve{\mathtt{o}}, \breve{\mathtt{s}}, \breve{\mathtt{d}}, \breve{\mathtt{f}} \}.$$

Satz

Die Allenschen Basis-Relationen sind paarweise disjunkt, d.h.

$$A r_1 B \wedge A r_2 B \implies r_1 = r_2.$$

Schreibweise

$$A\{r_1, \dots, r_n\}B := (A \ r_1 \ B) \lor (A \ r_2 \ B) \dots \lor (A \ r_n \ B)$$

 $A\{r_1,\ldots,r_n\}B$ nennt man atomares Allen-Constraint

Beispiele

Teig zubereiten

TeigR {m} TeigZub

während, aber vorher endend

Sahne $\{s,d\}$ BelagZub

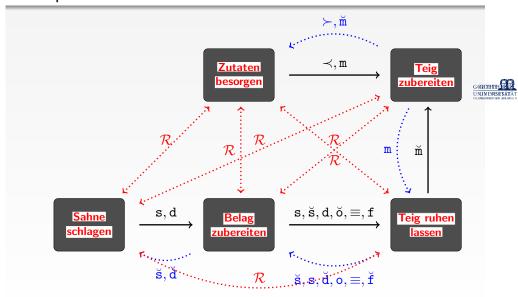
beginnt während

BelagZub $\{s, \check{s}, d, \check{o}, \equiv, f\}$ TeigR

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

13/66

Beispiel als Constraintnetzwerk



M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

14/66

Allensche Formeln: Semantik

Interpretation I:

bildet Intervallnamen auf Intervalle [a,b] ab, wobei $a,b \in \mathbb{R}$ und a < b.

Interpretation von atomaren Aussagen $A\ r\ B$:

Sei $I(A) = [A_a, A_e]$ und $I(B) = [B_a, B_e]$.

- $I(A \prec B) = 1$, gdw. $A_e < B_a$
- I(A m B) = 1, gdw. $A_e = B_a$
- $I(A \circ B) = 1$, gdw. $A_a < B_a$, $B_a < A_e$ und $A_e < B_e$
- \bullet $I(A ext{ s } B) = 1$, gdw. $A_a = B_a ext{ und } A_e < B_e$
- I(A f B) = 1, gdw. $A_a > B_a$ und $A_e = B_e$
- $I(A ext{ d } B) = 1$, gdw. $A_a > B_a ext{ und } A_e < B_e$
- $I(A \equiv B) = 1$, gdw. $A_a = B_a$ und $A_e = B_e$
- $I(A \ r_0 \ B) = 1$, gdw. $I(B \ r_0 \ A) = 1$
- $I(A \succ B) = 1$, gdw. $I(B \prec A) = 1$

Allensche Formeln: Semantik (2)

Interpretation von Allenschen Formeln:

$$\begin{array}{lll} I(F \wedge G) = 1 & \text{gdw.} & I(F) = 1 \text{ und } I(G) = 1 \\ I(F \vee G) = 1 & \text{gdw.} & I(F) = 1 \text{ oder } I(G) = 1. \\ I(\neg F) = 1 & \text{gdw.} & I(F) = 0 \\ I(F \iff G) = 1 & \text{gdw.} & I(F) = I(G) \\ I(F \Rightarrow G) = 1 & \text{gdw.} & I(F) = 0 \text{ oder } I(G) = 1 \end{array}$$

D.h.: wie üblich

Modelle und Erfüllbarkeit

Interpretation I ist ein **Modell** für F gdw. I(F) = 1 gilt.

Eine Allensche Formel F ist:

- widersprüchlich (inkonsistent), wenn es kein Modell für F gibt.
- \bullet allgemeingültig, wenn jede Interpretation ein Modell für F ist.
- \bullet erfüllbar, wenn es mindestens ein Modell für F gibt.

Zwei Formeln F und G sind **äquivalent** gdw. $\forall I: I(F) = I(G)$

Semantische Folgerung: $G \models F$ gdw. $\forall I : I(G) = 1 \Rightarrow I(F) = 1$

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

17/66

Vereinfachungsregeln für Allensche Formeln

- Ein atomare Aussage der Form $A\ r\ A$ kann man immer vereinfachen zu 0,1:
 - $\bullet \ A \ r \ A \ \to \ 0 \text{, wenn} \ r \neq \equiv \text{und}$
 - $\bullet \ A \equiv A \rightarrow 1.$
- Negationszeichen kann man nach innen schieben.
- Eine Formel $\neg (A \ R \ B)$ kann man zu $A \ (\mathcal{R} \setminus R) \ B$ umformen.
- Unterformeln der Form A R_1 $B \wedge A$ R_2 B kann man durch A $(R_1 \cap R_2)$ B ersetzen.
- Unterformeln der Form A R_1 $B \vee A$ R_2 B kann man durch A $(R_1 \cup R_2)$ B ersetzen.
- ullet atomare Formeln der Form $A \not \! D B$ kann man durch 0 ersetzen.
- ullet atomare Formeln der Form $A\ \mathcal{R}B$ kann man durch 1 ersetzen.
- Alle aussagenlogischen Umformungen sind erlaubt.

Disjunktionen von atomaren Formeln

ullet Zur Erinnerung: A S B mit $S\subseteq \mathcal{R}$ nennen wir atomares Allen-Constraint

• Z.B.: Statt $A \prec B \lor A \neq B \lor A \neq B \Rightarrow$ schreiben wir $A \{ \prec, \mathtt{s}, \mathtt{f} \}$ $B \Rightarrow$

• Beachte: Es gibt 2^{13} solche Mengen S.

• Auch erlaubt: $A \emptyset B$, Semantik: $I(A \emptyset B) = 0$.

• $A \mathcal{R} B$ bedeutet: alles ist möglich, $I(A \mathcal{R} B) = 1$.

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

18/66

Vereinfachungen (2)

Theorem

Jede Vereinfachungsregel für Allensche Formeln erhält die Äquivalenz, d.h. wenn $F \to F'$, dann sind F und F' äquivalente Formeln.

Beweis: Verwende die Semantik

Allenscher Kalkül

• Eingabe: Allen-Constraint

füge dann zusammen.

(Widerspruch) oder 1 (Tautologie)

• Bei disjunktiven Allen-Constraints:

Mit den Vereinfachungen kann jede Allensche Formel umgeformt werden in ein

Disjunktives Allen-Constraint

- (konjunktives) Allen-Constraint: Eine Konjunktion von atomaren Allen-Constraints: $A_1 \ S_1 \ B_1 \land \ldots \land A_n \ S_n \ B_n$
- ② Disjunktives Allen-Constraint: Disjunktion von (konjunktiven) Allen-Constraints Weniger geht nicht: Z.B. nicht vereinfachbar: $A \preceq B \lor C \preceq D$

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

21/66

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

22/66

Allenscher Kalkül (2)

Wesentliche Regel: "Transitivitätsregel"

- Aus $A \prec B \land B \prec C$ kann man $A \prec C$ folgern.
- Aus $A \prec B \land C \prec B$ kann man nichts neues über die Beziehung zwischen A und C folgern (alles ist möglich)

Allenscher Kalkül (3)

Wie folgert man genau?

• Basisrelationen r_1, r_2 : $A \ r_1 \ B \wedge B \ r_2 \ C$. Man braucht die Komposition $(r_1 \circ r_2)$, als kleinste Menge mit: $A \ r_1 \ B \wedge B \ r_2 \ C \models A(r_1 \circ r_2)C$. Beachte: $(r_1 \circ r_2)$ ist nicht unbedingt eine Basisrelation

• Ausgabe: Weitere Beziehungen die daraus folgen, bzw. 0

bearbeite die konjunktiven Allen-Constraints unabhängig und

• Es reichen im Grunde: Konjunktive Allen-Constraints

• $R_1, R_2 \subseteq \mathcal{R}$: $A \ R_1 \ B \wedge B \ R_2 \ C$. Komposition der Mengen: Sei $R_1 \circ R_2$ gerade die (kleinste) Menge mit: $AR_1B \wedge BR_2C \models A(R_1 \circ R_2)C$.

Kompositionsmatrix

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	≺om ds
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d s
ă dř dš mm dodřodšodřodšodř dodš	ď
o	≺ o m
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŏďš
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	~
$ \begin{array}{c c} \overline{\mathtt{m}} & \stackrel{dom}{\check{\mathtt{d}}\check{\mathtt{f}}} & \succ & \widecheck{\mathtt{o}}\mathtt{d}\mathtt{f} & \succ & \widecheck{\mathtt{o}}\mathtt{d}\mathtt{f} & \succ & \underline{\mathtt{s}}\mathtt{s} & \succ & \underline{\mathtt{d}}\mathtt{f}\widecheck{\mathtt{o}} & \succ & \widecheck{\mathtt{m}} \end{array} $	m
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	≺ o m
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ď
d s	≡ f ř
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ť

Nur 12×12 -Matrix, da:

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

25/66

Kompositionsmatrix

Die Einträge kann man per Hand ausrechnen.

Oder einmalige automatische Berechnung.

Beispiel: $\prec \circ d$

Betrachte alle möglichen Lagen für $A \prec B \land B$ d C

Möglichkeiten: $A \{ \prec, o, m, s, d \} C$.

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

26/66

Komposition der Mengen

Beispiel: Aus A {m,d} $B \wedge B$ {f,d} C kann man schließen

$$\begin{array}{ll} A \ (\mathtt{m} \circ \mathtt{f} \cup \mathtt{m} \circ \mathtt{d} \cup \mathtt{d} \circ \mathtt{f} \cup \mathtt{d} \circ \mathtt{d}) \ C \\ = \ A \ \{\mathtt{d}, \mathtt{s}, \mathtt{o}\} \cup \{\mathtt{d}, \mathtt{s}, \mathtt{o}\} \cup \{\mathtt{d}\} \cup \{\mathtt{d}\} \ C \\ = \ A \ \{\mathtt{d}, \mathtt{s}, \mathtt{o}\} \ C \end{array}$$

Allgemein gilt:

Satz

Seien $r_1, \ldots, r_k, r'_1, \ldots, r'_k$ Allensche Basisrelationen. Dann gilt

$$\{r_1, \dots, r_k\} \circ \{r'_1, \dots, r'_k\} = \bigcup \{r_i \circ r'_j \mid i = 1, \dots, k, j = 1, \dots, k'\}$$

Inverse für Mengen

Inversion für Mengen von Basisrelationen

Sei
$$S = \{r_1, \dots, r_k\} \subseteq \mathcal{R}$$
 und $\breve{S} = \{\breve{r_1}, \dots, \breve{r_k}\}.$

Beachte. Es gilt: $\check{r} = r$

Damit gilt:

Satz

Für $S\subseteq \mathcal{R}$ gilt: A S B und B \check{S} A sind äquivalente Allensche Formeln.

Satz

$$\breve{\cdot}(r_1 \circ r_2) = \breve{r_2} \circ \breve{r_1}$$

$$\overbrace{(r_1 \circ r_2)} = \breve{r_2} \circ \breve{r_1}$$

Allenscher Abschluss für Konjunktive Allen-Constraints

Eingabe: Konjunktives Allen-Constraint

Ausgabe: Allenscher Abschluss

Verfahren: Berechne Fixpunkt bezüglich der Regeln (auf Subformeln):

- Vereinfachungen: (→ bedeutet "ersetze")
 - $A R_1 B \wedge A R_2 B \rightarrow A (R_1 \cap R_2) B$
 - $A \emptyset B \rightarrow \mathtt{False}$
 - $A \mathcal{R} B \rightarrow 1$
 - $A R A \rightarrow 0$, wenn $\equiv \not \in R$.
 - $A R A \rightarrow 1$, wenn $\equiv \in R$.
- Folgerungen: (→ bedeutet "füge hinzu")
 - $A R B \rightsquigarrow B \breve{R} A$, wobei $\breve{R} := \{\breve{r_1}, \dots, \breve{r_n}\}$ für $R = \{r_1, \dots, r_n\}$
 - $A R_1 B \wedge B R_2 C \rightsquigarrow A (R_1 \circ R_2) C$.
- und übliche aussagenlogische Umformungen

Allenscher Abschluss für alle Allen-Constraints

- Für konjunktive Allensche Constraints: Wende die Regeln des Allenschen Kalküls solange an, bis sich keine neuen Beziehungen mehr herleiten lassen (Fixpunkt)
- Disjunktive Constraints: Wende Fixpunktiteration auf jede Komponente an, und vereinfache anschließend
 - Komponente = 1: Disjunktiver Constraint ist äquivalent zu 1
 - Komponente = 0: Kann gestrichen werden
 - Alle Komponenten = 0: Disjunktiver Constraint widersprüchlich (Inkonsistenz)

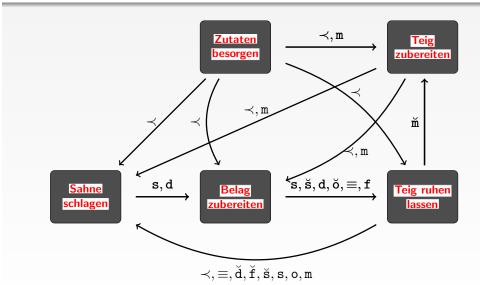
M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

29/66

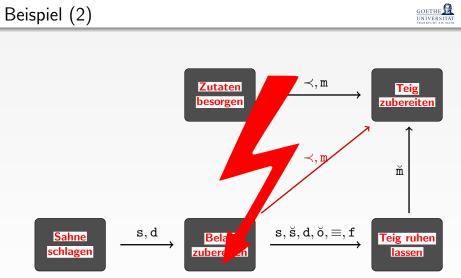
M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

30/66

Beispiel



Beispiel (2)



Korrektheit, Vollständigkeit

Wir sagen, der Allen-Kalkül ist

- **korrekt**, wenn bei $F \to F'$ stets gilt: F und F' sind äquivalente Formeln
- herleitungs-vollständig, wenn er für jedes konjunktive Constraint alle semantisch folgerbaren Einzel-Relationen herleiten kann.
- widerspruchs-vollständig, wenn er für jedes unerfüllbare konjunktive Constraint herausfinden kann, dass es widersprüchlich ist (Herleitung der 0)

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

33/66

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

34/66

Implementierung der Allen-Vervollständigung

- Wesentliche Regel: Transitivitätsregel $A R_1 B \wedge B R_2 C \rightarrow A R_1 \circ R_2 C$.
- Konjunktive Allen-Constraints (schon zusammengefasst, Intervalle A_1, \ldots, A_n :

$$\bigwedge_{i,j\in\{1,\dots,n\}} A_i R_{i,j} A_j$$

Nicht vorhandene Relation werden auf \mathcal{R} gesetzt.

- Abschluss kann mit einer $n \times n$ -Tabelle gemacht werden
- Sobald \emptyset irgendwo auftaucht, kann man abbrechen
- Ähnlich zum Warshall-Algorithmus
- Bei disjunktiven Allen-Constraints: bearbeite die Allen-Constraints separat und fasse dann zusammen.

Fragestellungen

• Wie aufwändig ist die Berechnung des Abschlusses der Allenschen Relationen?

- Ist der Allen-Kalkül korrekt?
- Ist die Berechnung herleitungs- bzw- widerspruchs-vollständig?
- Was ist die Komplexität der Logik und der Herleitungsbeziehung, evtl. für eingeschränkte Eingabeformeln?
- Wie kann man den Allenschen Kalkül für aussagenlogische Kombinationen von Intervallformeln verwenden?

Beispiel für das Eingabearray

Zutaten $\{ \prec, m \}$ TeigZub TeigRuht {m} TeigZub Sahne {s,d} Belagzub Belagzub $\{\equiv, s, \check{s}, d, f, \check{o}\}$ TeigRuht

$R_{i,j}$	(1) Zutaten	(2) Teigzub	(3) TeigRuht	(4) Sahne	(5) Belagzub
(1) Zutaten	{≡}	$\{\prec,\mathtt{m}\}$	\mathcal{R}	\mathcal{R}	$\mathcal R$
(2) Teigzub	{≻, mັ}	{≡}	{m}	\mathcal{R}	$\mathcal R$
(3) TeigRuht	\mathcal{R}	{mັ}	{≡}	\mathcal{R}	$\{\equiv, \breve{\mathtt{d}}, \breve{\mathtt{f}}, \mathtt{s}, \breve{\mathtt{s}}, \mathtt{o}\}$
(4) Sahne	\mathcal{R}	\mathcal{R}	\mathcal{R}	{≡}	$\{d,s\}$
(5) Belagzub	\mathcal{R}	\mathcal{R}	$\{\equiv,\mathtt{s},\breve{\mathtt{s}},\mathtt{d},\mathtt{f},\breve{\mathtt{o}}\}$	$\{\check{\mathtt{d}}, \check{\mathtt{s}}\}$	{≡}

Beispiel für die Completion

Vervollständigung: (Vorführung)

$R_{i,j}$	Zutaten	Teigzub	TeigRuht	Sahne	Belagzub
(1) Zutaten	{≡}	$\{\prec,\mathtt{m}\}$	~	~	~
(2) Teigzub	$\{\succ, \breve{\mathtt{m}}\}$	{≡}	{m}	$\{\succ, m\}$	$\{\succ, m\}$
(3) TeigRuht	>	{mັ}	{≡}	$\{\succ, \equiv, \check{\mathtt{d}}, \check{\mathtt{f}}, \check{\mathtt{s}}, \mathtt{m}, \mathtt{o}, \mathtt{s}\}$	$\{\equiv, \check{\mathtt{d}}, \check{\mathtt{f}}, \check{\mathtt{s}}, \mathtt{o}, \mathtt{s}\}$
(4) Sahne	>	$\{\succ, \breve{\mathtt{m}}\}$	$\{\equiv,\succ,\breve{\mathtt{m}},\breve{\mathtt{o}},\breve{\mathtt{s}},\mathtt{d},\mathtt{f},\mathtt{s}\}$	{≡}	{d,s}
(5) Belagzub	>	$\{\succ, \breve{\mathtt{m}}\}$	$\{\equiv, \breve{\mathtt{o}}, \breve{\mathtt{s}}, \mathtt{d}, \mathtt{f}, \mathtt{s}\}$	$\{\breve{\mathtt{d}},\breve{\mathtt{s}}\}$	{≡}

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

37/66

Erläuterung

$$R' := R_{i,j} \cap (R_{i,k} \circ R_{k,j})$$

entspricht gerade

Algorithmus 1

```
Algorithmus Allenscher Abschluss, Variante 1
Eingabe: (n \times n)-Array R, mit Einträgen R_{i,j} \subseteq \mathcal{R}
Algorithmus:
repeat
  change := False:
   for i := 1 to n do
     for i := 1 to n do
        for k := 1 to n do
          R' := R_{i,j} \cap (R_{i,k} \circ R_{k,j});
          if R_{i,j} \neq R' then
             R_{i,j} := R';
             change := True;
          endif
        endfor
     endfor
   endfor
until change=False
```

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

38/66

Eigenschaften Algorithmus 1

- Ähnlich zu Warshall-Algorithmus, aber iteriert (notwendig!)
- solange bis Fixpunkt erreicht ist
- Korrekt: Offensichtlich

Laufzeit: Im worst-case $O(n^5)$

Begründung:

- 3 for-Schleifen: $O(n^3)$
- ullet repeat-Schleife: Im schlechtesten Fall wird ein $R_{i,j}$ um eins verkleinert
- pro $R_{i,j}$ maximal 13 Verkleinerungen
- Es gibt n^2 Mengen $R_{i,j}$
- Daher: repeat-Schleife wird maximal $O(n^2)$ mal durchlaufen
- ullet ergibt: $O(n^5)$

Algorithmus Allenscher Abschluss, Variante 2 Eingabe: $(n \times n)$ -Array R, mit Einträgen $R_{i,j} \subseteq \mathcal{R}$ Algorithmus: queue $:= \{(i,k,j) \mid 1 \le i \le n, 1 \le k \le n, 1 \le j \le n\};$ while queue $\neq \emptyset$ do Wähle und entferne Tripel (i,k,j) aus queue; $R' := R_{i,j} \cap (R_{i,k} \circ R_{k,j});$ if $R_{i,j} \neq R'$ then $R_{i,j} := R;$ queue := queue ++ $\{(i,j,m) \mid 1 \le m \le R_{i,m} + \{(m,i,j) \mid 1 \le m \le R_{i,j}\}, i$ endif endwhile

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

41/66

Allenscher Kalkül: Korrektheit

Korrektheit

Der Allensche Kalkül ist korrekt, d.h. wenn $F \to F'$, dann sind F und F' äquivalente Formeln

Beweis (Skizze): Verwende die Semantik

- Aussagenlogische Umformungen: klar
- A R_1 $B \wedge A$ R_2 B ist äquivalent zu A $(R_1 \cap R_2)$ B:

Sei
$$R_1 = \{r_1, \dots, r_k\}, R_2 = \{r'_1, \dots, r'_{k'}\}.$$

 $A R_1 B \wedge A R_2 B$

- $= (\bigvee Ar_i B) \wedge (\bigvee A r'_{i'} B)$
- $\sim \bigvee \{(A r_i B) \land (A r'_{i'} B) \mid 1 \le i \le k, 1 \le i' \le k'\}$ (ausmultiplizieren)
- $\sim \bigvee \{(A \ r_i \ B) \land (A \ r'_{i'} \ B) \mid 1 \le i \le k, 1 \le i' \le k', r_i = r'_{i'}\}$ (Basisrelationen disjunkt)
- $= A(R_1 \cap R_2) B$
 - $A \emptyset B \sim 0$ und $A \mathcal{R} B \sim 1$ (klar)

Eigenschaften Algorithmus 2

Korrektheit: Bei Änderung von $R_{i,j}$ werden alle Nachbarn, die evtl. neu berechnet werden müssen, in queue eingefügt

Laufzeit:

- ullet Am Anfang: queue enthält n^3 Tripel
- while-Schleife entfernt pro Durchlauf ein Element aus queue
- Einfügen in queue in der Summe:
 - $R_{i,j}$ kann höchstens 13 mal verändert werden.
 - D.h. höchstens $n^2 * 13$ mal wird eingefügt
 - Einmal einfügen: 2*n Tripel werden hinzugefügt

Insgesamt: Es werden höchstens $13*2*n*n^2$ Tripel zu queue hinzugefügt

• Ergibt $O(n^3)$ Durchläufe der while-Schleife (von denen maximal $O(n^2)$ Durchläufe O(n) Laufzeit verbrauchen und die restlichen O(n) in konstanter Laufzeit laufen)

Algorithmus 2 hat worst-case-Laufzeit $O(n^3)$

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

42/66

СОЖИНИН

Allenscher Kalkül: Korrektheit (2)

Beweis (Fortsetzung)

- $A\ R\ A$ ist äquivalent zu 0 , wenn $\equiv\not\in R$ und
- A R A ist äquivalent zu 1, wenn $\equiv \in R$:

Jede Interpretation bildet I(A) eindeutig auf ein Intervall ab.

-Transitivitätsregel:

Basisrelationen: Man muss die Korrektheit der Matrix prüfen. Für mehrelementige Mengen:

$$A \{r_1, \ldots, r_k\} B \wedge B \{r'_1, \ldots, r'_{k'}\} C$$

- = $(A r_1 B \lor ... \lor A r_k B) \land (B r'_1 C \lor ... \lor B r'_{k'} C)$ (ausmultiplizieren)
- $\sim \bigvee \{ (A \ r_i \ B \land B \ r'_{i'} \ C) \mid 1 \le i \le k, 1 \le i' \le k' \}$ (Basis)
- $\sim \quad \bigvee \{ (A \ r_i \ B \wedge B \ r'_{i'} \ C \wedge A \ r_i \circ r'_{i'} \ C) \mid 1 \le i \le k, 1 \le i' \le k' \}$
- $\sim A \{r_1, \dots, r_k\} B \wedge B \{r'_1, \dots, r'_{k'}\} C \wedge \bigvee \{(A r_i \circ r'_{i'} C) \mid 1 \le i \le k, 1 \le i' \le k'\}$
- $= A \{r_1, \ldots, r_k\} B \wedge B \{r'_1, \ldots, r'_{k'}\} C \wedge A \{r_1, \ldots, r_k\} \circ \{r'_1, \ldots, r'_{k'}\} C$

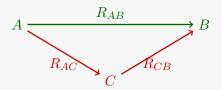
Partielle Vollständigkeit

GOETHE UNIVERSITA

Der Allensche Kalkül ist vollständig in eingeschränktem Sinn:

Satz (Pfadkonsistenz)

Der Allensche Abschluss ist 3-konsistent:



D.h.: Jede Belegung I der Intervalle A und B mit $I(A R_{AB} B) = {\tt True}$ kann auf das Intervall C erweitert werden, so dass $I(A R_{AC} C) = {\tt True} = I(C R_{CB} B).$

Es gilt **nicht** (globale Konsistenz):

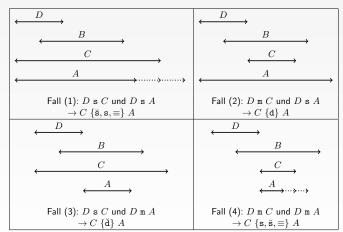
Jede Belegung von k Knoten kann auf k+1 Knoten unter Erhaltung der Erfüllbarkeit erweitert werden

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

45/66

Beweis (Fortsetzung)

- ullet Die Lage von B zu D ist eindeutig.
- ullet Möglichkeiten wie A zu D und C zu D: 4 Fälle



 $C \{f, \check{f}, o, \check{o}\}$ A nicht möglich!

Unvollständigkeit des Allen-Kalküls

Leider gilt:

Theorem

Der Allensche Kalkül ist nicht herleitungs-vollständig.

Beweis: Gegenbeispiel: Für den Allenschen Constraint:

$$D \text{ {o}} B \wedge D \text{ {s,m}} C \wedge D \text{ {s,m}} A \wedge A \text{ {d, \check{d}}} B \wedge C \text{ {d, \check{d}}} B$$

ist der Allensche Abschluss:

$$D \ \{\mathsf{o}\} \ B \land D \ \{\mathsf{s},\mathsf{m}\} \ C \land D \ \{\mathsf{s},\mathsf{m}\} \ A \land A \ \{\mathsf{d},\check{\mathsf{d}}\} \ B \land C \ \{\mathsf{d},\check{\mathsf{d}}\} \ B \\ \land C \ \{\mathsf{s},\check{\mathsf{s}},\equiv,\mathsf{o},\check{\mathsf{o}},\check{\mathsf{d}},\check{\mathsf{d}},\mathsf{f},\check{\mathsf{f}}\} \ A$$

Aber C {f, \check{f} , o, \check{o} } A ist nicht möglich (nächste Folie) D.h. Allen-Verfahren erkennt diese Unmöglichkeit nicht

M. Schmidt-Schauß \cdot KI \cdot SoSe 2022 \cdot Allens Zeitlogik

46/66

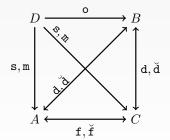
Unvollständigkeit des Allen-Kalküls (2)

Ebenso gilt:

Theorem

Der Allensche Kalkül ist nicht widerlegungsvollständig.

Beweis: Gegenbeispiel: Leichte Abwandlung des Beispiels davor Füge A $\{f, \check{f}\}$ C hinzu, d.h. man erhält das Constraintnetzwerk:



Allenscher Abschluss: Verändert das Netzwerk nicht, aber es ist widersprüchlich!

Konsequenzen der Unvollständigkeit

Frage: Ist Allen-Constraint *F* widersprüchlich?

- Abschluss = 0, dann JA
- Abschluss = 1, dann NEIN
- Abschluss weder 0 noch 1: man weiß nichts

Frage: Ist Allen-Constraint F erfüllbar?

- Abschluss = 0, dann NEIN
- Abschluss = 1, dann JA (Tautologie)
- Abschluss weder 0 noch 1: man weiß nichts

UNIVERSITÄT FRANKFURT AM MAIN

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

49/66

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

50/66

Eindeutige Allen-Constraints (2)

Satz (Valdés-Pérez, 1987)

Ein eindeutiges Allensches Constraint ist erfüllbar, gdw. der Allensche Kalkül bei Vervollständigung das Constraint nicht verändert, d.h. wenn es ein Fixpunkt ist.

Beweisidee: Zeige, wenn Allen-Kalkül keinen Widerspruch entdeckt, dann ist Constraint erfüllbar.

Es gibt dann eine totale Ordnung der Intervallenden

Korollar

Auf eindeutigen Allen-Constraints ist der Allen-Kalkül korrekt und vollständig

Eindeutige Allen-Constraints

Definition

Ein Allensches Constraint nennt man eindeutig, wenn für alle Paare A,B von Intervallkonstanten gilt: Das Constraint enthält genau eine Beziehung $A\ r\ B$, wobei r eine der dreizehn Basisrelationen ist.

Es gilt:

Satz

Der Allensche Abschluss eines eindeutigen Allenschen Constraints ${\cal F}$ ist entweder 0, oder wiederum ${\cal F}.$

Beweis: Jede Transitivitätsregelanwendung leitet \emptyset her, oder lässt Eintrag unverändert.

Eindeutige Allen-Constraints: Menge

Zu jedem Allenschen Constraint C kann man die Menge aller zugehörigen eindeutigen Allenschen Constraints D definieren, wobei gelten muss:

Wenn A r B in D vorkommt und A R B in C, dann gilt $r \in R$.

Lemma

Ein Allen-Constraint ist erfüllbar, gdw. es ein zugehöriges eindeutiges Constraint gibt, das erfüllbar ist.

Beweis: Klar

Komplexität des Problems

Algorithmus Erfüllbarkeitstest für konjunktive Allensche Constraints

```
Eingabe: (n \times n)-Array R, mit Einträgen R_{i,j} \subseteq \mathcal{R}
Ausgabe: True (Widerspruch) oder False (erfüllbar)
```


function AllenSAT(R): R' := AllenAbschluss(R); if $\exists R'_{i,j}$ mit $R'_{i,j} = \emptyset$ then return True endif;// Widerspruch if $\forall R'_{i,j}$ gilt: $|R'_{i,j}| = 1$ then return False // eindeutig und erfüllbar else

```
wähle R'_{i,j} mit R'_{i,j} = \{r_1, r_2, \ldots\}; R^l := R'; \ R^l_{i,j} := \{r_1\}; // \ \text{kopiere} \ R' \ \text{und setze} \ (i,j) \ \text{auf} \ r_1 \\ R^r := R'; \ R^r_{i,j} := R'_{i,j} \setminus \{r_1\}; // \ \text{kopiere} \ R' \ \text{und setze} \ (i,j) \ \text{auf} \ r_2, \ldots return (\mathsf{ASAT}(R^l) \land \mathsf{ASAT}(R^r)); endif
```

Der Algorithmus ist korrekt und vollständig. Die Laufzeit ist im worst-case **exponentiell**. Mittlere Verzweigungsrate: 6,5

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

53/66

Beweis (Fortsetzung)

\mathcal{NP} -Härte:

Reduktion von 3-Färbbarkeit auf Erfüllbarkeit von Allen-Constraints

3-Färbbarkeit:

Kann man die Knoten eines ungerichteten Graphen mit drei Farben färben, so dass benachbarte Knoten stets verschiedene Farben haben?

Satz

Das Erfüllbarkeitsproblem für konjunktive Allenschen Constraints ist \mathcal{NP} -vollständig.

Beweis:

GOETHE UNIVERSITÄT

Problem ist in \mathcal{NP} :

- Rate lineare Reihenfolge der Intervallandange und -enden
- ullet D.h. Ordnung auf allen X_a, X_e für alle Intervalle X
- Verifiziere ob Reihenfolge das Constraint erfüllt
- Verifikation geht in Polynomialzeit

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

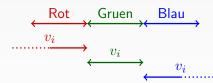
54/66

Beweis (Fortsetzung)

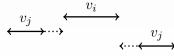
Für G = (V, E) erzeuge:

• (Rot m Gruen) ∧ (Gruen m Blau)

ullet Für die Knoten: $\forall v_i \in V: v_i \ \{\mathtt{m}, \equiv, reve{\mathtt{m}}\}$ Gruen



• Für die Kanten: $\forall (v_i, v_j) \in E : v_i \{m, \check{m}, \prec, \succ\} v_j$



Beweis (Fortsetzung)

Daher gilt: Der Graph ist dreifärbbar, gdw. die Allenschen Relationen erfüllbar sind. Die Zuordnung ist:

- ullet v_i hat Farbe grün gdw. $v_i \equiv \mathsf{Gruen}$
- v_i hat Farbe rot gdw. v_i m Gruen
- ullet v_i hat Farbe blau gdw. v_i $lap{m}$ Gruen

Übersetzung ist in Polynomialzeit durchführbar, daher Erfüllbarkeit $\mathcal{NP} ext{-Hart}$

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

57/66

Varianten

Es gibt polynomielle, vollständige Verfahren für

Allensche Constraints mit eingeschränkter Syntax

Eine haben wir bereits gesehen:

Eindeutige Allen-Constraints

Folgerungen

- Jeder vollständige Algorithmus braucht Exponentialzeit. (unter Annahme $\mathcal{NP} = EXPTIME$)
- Die polynomielle Allen-Vervollständigung ist **im allgemeinen unvollständig**

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

58/66

Varianten (2)

Neue Variante:

- Erlaube nur Allensche Relationen, so dass:
- ullet Übersetzung in Bedingungen über die Endpunkte nur Konjunktionen von der Form x < y oder x = y
- Dann gilt: Man braucht keine Fallunterscheidung

Passender Satz von Relationen:

- Alle Basisrelationen,
- $\{d, o, s\}$, und $\{\breve{o}, f, d\}$ und deren Konverse. d.h. $\{\breve{d}, \breve{o}, \breve{s}\}$, und $\{o, \breve{f}, \breve{d}\}$.

Varianten (3)

Z.B. $A\{d, o, s\}B$ als Ungleichung über den Endpunkten:

Wenn $A=[A_a,A_e], B=[B_a,B_e]$, dann entspricht obige Relation gerade

$$A_a < A_e, B_a < B_e, A_e < B_e, B_a < A_e$$

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

61/66

Hintergrund

Diese spezielle Klasse lässt sich als Grund-Hornklauseln darstellen, d.h. Klauseln mit maximal einem positiven Literal.

Für Grund-Hornklauselmengen ist Erfüllbarkeit in polynomieller Zeit testbar.

Man hat Fakten in der Form a < b und c = d, wobei a,b,c,d unbekannte Konstanten sind. Es gibt auch Hornklauseln, die von der Symmetrie und Transitivität stammen:

$$\begin{array}{lll} x < y \wedge y < z & \Rightarrow & x < z \\ x = y \wedge y = z & \Rightarrow & x = z \\ x = y & \Rightarrow & y = x \\ x < y \wedge y = z & \Rightarrow & x < z \\ x = y \wedge y < z & \Rightarrow & x < z \end{array}$$

Varianten (4)

Auf solchen Constraints kann man Erfüllbarkeit in Polynomialzeit testen

- Transitiver Abschluss der Endpunktbeziehungen
- anschließend lineare Reihenfolge mit topologischem Sortieren

Es gilt aber sogar

Satz (Nebel, Bürckert, 1995)

Auf den so eingeschränkten Allen-Constraints ist der Allensche Kalkül korrekt und vollständig.

M. Schmidt-Schauß \cdot KI \cdot SoSe 2022 \cdot Allens Zeitlogik

62/66

Hintergrund (2)

Man kann weitere Allensche Constraints zulassen, und behält die Vollständigkeit des Allen-Kalküls:

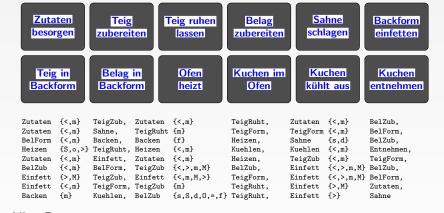
- Alle Constraints deren Übersetzung in Constraints über Endpunkten Hornklauseln ausschließlich mit Literalen $a \le b$, a = b und $\neg (a = b)$ erzeugt.
- \bullet Von den $2^{13}=8192$ möglichen Beziehungen erfüllen 868 diese Eigenschaft

Man kann diese auch für die Fallunterscheidung des exponentiellen Verfahrens verwenden.

Vorteil: Kleinere mittlere Verzweigungsrate (Statt 6,5 nur 2,533 (Nebel 1997))

Kuchen backen

65/66



Allen-Programm:

: 177.247.393.995.618.482.069.389.150.242.626.279.322.671.526.463.930.368 Max. #Modelle in der Eingabe

Max. #Modelle nach Allen-Abschluss: 5.898.240

Anzahl Modelle : 1.536 Allenscher Abschluss genau? : True

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

Ausblick

Qualitatives räumliches Schließen

- Eindimensional: Genau die Allensche Intervalllogik
- Zweidimensional: Region-Connection-Calculus (RCC8), (Randell, Cui & Cohn, 1992)

 $X \ \mathrm{DC} \ Y$ "disconnected"

X PO Y

"partially

overlapping

 $X \to \mathbb{C} Y$ "externally connected'

 $X \to C Y$

"equal"

X TPP Y"tangential proper part"

X TPPi Y"tangential

X NTPP Y"non-tangential proper part"

proper part inverse"

"non-tangential proper part inverse"

M. Schmidt-Schauß · KI · SoSe 2022 · Allens Zeitlogik

66/66