
Fachbereich 12 Informatik und Mathematik
Institut für Informatik

Diplomarbeit

Functional implementation of an
interpreter for a concurrent lambda

calculus with futures, reference
cells and buffers

Olga Wenge
Studiengang: Diplom-Informatik

Matrikelnummer: 2475727

Frankfurt am Main
28. September 2009

Betreuer: Prof. Dr. Manfred Schmidt-Schauß

Gesetzt am 28. September 2009 um 18:02 Uhr mit LATEX.

Acknowledgments

I would like to thank Prof. Dr. Manfred Schmidt-Schauß and Dr. David Sabel for
providing me with the possibility to participate in an innovative and challenging
research project and for the various ideas, suggestions and last but not least for the
professional expert guidance.

Thanks to my family, for all the possibilities they have created for me and for giving
me all the best support and personal reflection.

Olga Wenge

iii

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Frankfurt am Main, den 28. September 2009,

(Olga Wenge)

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 2

2 Background 5
2.1 Functional Programming . 5

2.1.1 Use of Functions in Functional Programming 5
2.1.2 Referential Transparency . 6
2.1.3 Evaluation Strategies . 7
2.1.4 Type System . 8

2.2 Haskell . 9
2.2.1 Getting Started with Haskell 9
2.2.2 Modularity . 9
2.2.3 Data types . 10
2.2.4 Function definitions . 11
2.2.5 List comprehensions . 12
2.2.6 Monads . 13

2.3 λ-Calculus . 14
2.3.1 Syntax of the Pure λ-calculus 14
2.3.2 Operational Semantics of the Pure λ-calculus 15
2.3.3 Extensions of the λ-calculus 18

2.4 Concurrent Programming . 19
2.4.1 What is concurrent computing? 19
2.4.2 Concurrency primitives . 20

3 Equivalence of Handled Futures and Buffers 23
3.1 The Calculus λτ (fc) . 23

3.1.1 Syntax of λ(fc) . 24
3.1.2 Variable Bindings and Well-Formedness 25
3.1.3 Operational Semantics and Contexts of λ(fc) 26

3.2 The Calculus λ(fch) . 28
3.3 The Calculus λ(fcb) . 29
3.4 The Calculus λ(fchb) . 31

3.4.1 Successfulness of processes in λ(fchb) 31
3.4.2 Convergence and Divergence of processes in λ(fchb) 31

3.5 Equivalence of Handled Futures and Buffers 32

v

Contents

3.5.1 Encoding Buffers Using Handled Futures 32
3.5.2 Encoding Handles Using Buffers 34

4 An Interpreter for the Calculus λ(fchb) 37
4.1 What is an interpreter? . 37
4.2 Interpreter design . 38
4.3 Implementation of Ifchb . 38

4.3.1 Module Syntax . 38
4.3.2 Module Lexer . 41
4.3.3 Module Parser . 45
4.3.4 Module SemAnalysis . 51
4.3.5 Module EncodingBtoH . 53
4.3.6 Module EncodingHtoB . 54
4.3.7 Module Transformation . 54
4.3.8 Module ReductionRules . 56
4.3.9 Module Evaluation . 58
4.3.10 Module Interpreter . 61
4.3.11 Module Decoding . 61

5 Testing 63

6 Conclusion and Further Work 69

Bibliography 73

vi

List of Figures

2.1 Some data types in Haskell . 10

3.1 Syntax of λ(fc), where x ∈ V ar and m ≥ 0 24
3.2 Structural congruence of λ(fc)-processes 25
3.3 Evaluation contexts of λ(fc) . 27
3.4 Reduction rules . 27
3.5 Syntax extension of λ(fc) for λ(fch) 29
3.6 Extension of operational semantics of λ(fc) for λ(fch) 29
3.7 Extension of syntax for λ(fcb) . 30
3.8 Extension of operational semantics of λ(fc) for λ(fcb) 30
3.9 Syntatic sugar . 32
3.10 Translation TB : λ (fcb) → λ(fch) . 33
3.11 Translation TH : λ (fch) → λ(fcb) . 34

4.1 Interpreter design . 39
4.2 Design of Ifchb . 40
4.3 Token data structure . 43
4.4 Actions of the module Parse . 49
4.5 Decoding of constructors . 50
4.6 Decoding of case-alternatives . 50
4.7 New data structure Proc’ . 55

vii

List of Figures

viii

1 Introduction

1.1 Motivation

Concurrent programming is no longer an esoteric approach in the modern world of
computing. Nowadays we cannot imagine our life without Internet, real-time systems
and interactive applications. To fullfil requirements of new technologies and provide
desired interaction and efficiency, programs are to be concurrent.

The main idea of concurrent programming is the execution of sequential subprograms,
called processes, in parallel. The processes have to "interact"with each other within
a program to achieve efficiency and correctness of its execution. Not all sequential
programming languages were fit to be used in concurrent programming, and for this
reason new concurrent programming languages were designed.

But to "resque"the favored sequential programming languages from their "neglect",
programmers have extended the standard libraries with concurrency using various
concurrency mechanisms, so called concurrency primitives. Concurrent ML 1, Alice
ML 2, MultiLisp 3 and Concurrent Haskell 4 are examples of extended functional
programming languages, and Join Java 5 and C* 6 are examples of so extended
object-oriented programming languages.

There is a wide range of concurrency primitives, but all of them persuit the same
purpose: to provide concurrency through communication and synchronization of pro-
cesses within a program. Therefore, the suggestion that various concurrency primi-
tives could be equivalent was obvious but not evidenced. This open challenge in con-
current programming was the motivation for Manfred Schmidt-Schauß, David Sabel,
Jan Schwinghammer, and Joachim Niehren to research synchronization concurrency
primitives in the concurrent λ-calculus.

In the paper On Proving the Equivalence of Concurrency Primitives [SSNSS08] M.
Schmidt-Schauß et al. focuced their research on the interactive behavior of concurrent
buffers and concurrent handles in the extended λ-calculus with futures 7 [NSS06] and

1http://cml.cs.uchicago.edu/
2http://www.ps.uni-sb.de/alice/
3http://portal.acm.org/citation.cfm?id=4478
4http://www.haskell.org/haskellwiki/GHC/Concurrency
5http://joinjava.unisa.edu.au/
6http://www.1stworldpublishing.com/books/parallelprogramming.asp
7λ (f) is an undelying calculus of Alice ML

1

1 Introduction

type conctructors λτ (fc). This work introduces a mutual encoding of concurrent
buffers and concurrent handles within the same calculus, and exemplarily prove their
equivalence by the following approach.

The approach is based on extending the same λ-calculus with concurrent buffers
(the calculus λτ (fcb)) and concurrent handles (the calculus λτ (fch)) and observing
adequacy of their translations TB : λτ (fcb) → λτ (fch) and TH : λτ (fch) → λτ (fcb)
with respect to may- and must-convergence.

Proof techniques in [SSNSS08] require a proper observation of the reduction, what is
syntactically very complex and error prone. Use of an interpreter could provide fur-
ther research with technical support and be used for observation of other concurrency
primitives and troubleshooting.

The purpose of this master’s thesis is a technical validation of the equivalence of
concurrency primitives, introduced by [SSNSS08].

To confirm the existing proof results we implement an interpreter for concurrent
λ-calculus with reference cells, concurrent buffers and concurrent handles. The in-
terpreter has to be able to provide the mutual encoding of concurrent buffers and
concurrent handles, translate a program from one calculus into another one, and
execute it.

1.2 Outline

In the following we give an outline of the chapters of this master’s thesis.

Chapter 2 contains all the background information needed before we start with an
interpreter implementation. This chapter begins with the introduction of concept
of functional programming. Further we give an overview of λ-calculus, an abstract
functional language, and of one modern functional programming language Haskell,
we use later in Chapter 4 for the technical implementation. Finally, we introduce
concurrent programming and describe some common concurrency mechanisms, which
are widely-used nowadays.

In Chapter 3 we introduce the calculus λτ (fc) and its extensions, calculi λτ (fch) and
λτ (fcb), resulting in the calculus λτ (fchb). Further in this chapter we define the mu-
tual encoding of concurrent handles and concurrent buffers and adequate translations
of calculi.

Chapter 4 is the technical implementation of the results of Chapter 3, where we
design and implement our interpreter for concurrent λ-calculus with reference cells,
concurrent buffers and concurrent handles.

In Chapter 5 we report on testing results of our software.

2

1.2 Outline

Finally, in Chapter 6 we give an overview of achieved results and make suggestions
for the further work.

3

1 Introduction

4

2 Background

This chapter provides some essential background required for the implementation of
our interpreter. The chapter begins with describing of main ideas of the functional
concept. Further we introduce Haskell, one of the most important functional lan-
guages, and give an overview about pure and extended λ-calculi. In the last section
we introduce another programming concept - concurrent programming, and explain
how sequential languages can be extended with concurrency primitives.

2.1 Functional Programming

The modern world of information technology offers programmers a wide range of
programming languages. They can be roughly divided into four classes: imperative,
object-oriented, logic and functional programming languages. Imperative languages
like Fortran and Cobol describe computation of a program using statements that
change a state of a program. Very popular nowadays languages Java and C++
are object-oriented languges, where a program consits of a collection of cooperating
objects. Logic and functional languages are also declarative languages, they describe
what the program should accomplish, rather than how to achive the result. Prolog
is an example of logic languages, its progarams are based on the principles of formal
logic. Functional languages such as Haskell, Miranda and Lisp based on the idea that
a program is a computable function[Pau96].

Functional languages are very peculiar programming languages with a number of
important benefits for programmers we introduce in the next sections.

2.1.1 Use of Functions in Functional Programming

In computer science a function can be described as a way of computing an output
value from an input value, or as a "black box"that converts a program input into its
output[Poh93]:

Input x → Function f → Output y = f(x)

As we already mentioned, functional programming is a programming approach based
on the notion of function as the main programming unit. Therefore the theory of

5

2 Background

functional programming originates from λ-calculus, a formal system for description
of computable functions. More details about λ-calculus we give in Section 2.3

A functional program is a collection of functions to solve some problem. The execu-
tion of a functional program involves the evaluation of an associated function which
defines the program result. Its evaluation may also involve the evaluation of many
other functions, if a function calls other functions or itself recursively via a func-
tion application. For example, the factorial function can be defined as recurrence
equitation as follows[SS06]:

factorial n = if (n==0) then 1 else n* factorial (n-1)

And one simple functional program can look like this:

main = factorial 5

Functional programming allows functions take another functions as arguments and
return new functions as results, such functions are called higher-order functions. This
peculiarity of functional languages provide an elegant programming style and allows
programmers to state the time sequence of events explicitly; that is what, for example,
statements do in imperative languages [RL99]. For example, consider functions map
and factorial. The function map (as defined in Haskell) returns a list constructed
by appling its first argument (a function) to all items of its second argument (a list):

map factorial [1, 2, 3] returns [1, 2, 6]

The use of higher-order functions enables transformation of functions with multiple
arguments into functions with a single argument to provide a partially evaluation
of functions. This transformation is called currying1. For example, we consider
functions curry (as defined in Haskell) and smaller. The function curry converts
an uncurried function with two arguments into a curried function with only one
argument. The function smaller takes the first argument (integer x) and returns a
function smaller x; the function smaller x takes the second argument (integer y)
and returns an integer (the smaller of x and y) [Tho99]:

curry f x y = f (x,y)

smaller :: Integer → (Integer → Integer) 2

smaller x y = if x ≤ then x else y

2.1.2 Referential Transparency

Variables in functional programming are only used to identify functions and expres-
sions; unlike in imperative languages, they do not identify one or more storage loca-
tions, and their values can not be changed using assignments. Forbidding assignments

1Is named after Haskell Brooks Curry, an American mathematician and logician.
2:: means ’has type’

6

2.1 Functional Programming

relieves functional languages from side-effects, i.e. the result of a program depends
only on the definition of its functions and values of its arguments. This feature of
functional languages is called referential transparency. The functional programming
languages which do not allow assignments are called pure:

"A language that supports the concept that "equals can be substituted for equals"without
changing the values of expressions is said to be referentially transparent" [SS89].

In other words, a function can be freely replaced with its value without changing
a program’s semantics. The principle of referential transparency allow functional
languages execute their programs in any evaluation order.

2.1.3 Evaluation Strategies

Functional programs are executed by evaluation their functions to values. Evaluation
strategy determines the reduction order and are divided into two basic groups: strict
and non-strict [SS06].

In strict evaluation an argument is always evaluated prior to a function call. This
reduction order is called applicative order. In non-strict evaluation an argument of a
function is evaluated only if its value is needed in the function, such reduction order
is called normal order.

Additionally to normal-order (or call-by-name) evaluation and applicative-order (or
call-by-value) evaluation, functional languages use lazy (or call-by-need) evaluation.
In lazy evaluation all occurences of an argument can be replaced by its value once it
is evaluated (principle of referential transparency). So, lazy evaluation possesses the
full power of the normal-order evaluation and is more efficient than the applicative
one.

The following example demonstrates that the result of a functional program does
not depend on its evaluation strategy. We consider the evaluation of the function
double x using the described evaluation strategies [Bir98]:

double x = add x x

add x y = x + y

normal-order evaluation:

double (5 * 4)

→ add (5 * 4) (5 * 4)

→ (5 * 4) + (5 * 4)

→ 20 + (5 * 4)

→ 20 + 20

→ 40 (5 reduction steps)

7

2 Background

applicative-order evaluation:

double (5 * 4)

→ double 20

→ add 20 20

→ 20 + 20

→ 40 (4 reduction steps)

lazy evaluation:

double (5 * 4)

→ add (5 * 4) (5 * 4)

→ (5 * 4) + (5 * 4)

→ 20 + 20

→ 40 (4 reduction steps)

We can see that the result value is the same, but the number of reduction steps is
different. The number of reduction steps shows that the normal-order evaluation is
less efficient.

Depending on their evaluation strategy, functional languages can be divided into lazy,
strict and non-strict languages.

2.1.4 Type System

Most functional languages have a strong static type system with type checking during
compile-time. Functional languages can also provide polymorphism and user-defined
data types. The identity function is an example of polymorphism in Haskell [Bir98]:

id:: a → a

id x = x

The type of id is given as a → a, which can be read "for all types a, a function from
a to a". Here a is called a type variable.

————————————————

The other peculiarities of functional languages, such as modularity, pattern matching
and monads we give in the next section, where we introduce Haskell, a lazy func-
tional language with strong static type system. More information about functional
programming can be found for example in [Bir98], [SS07] or [Mic88].

8

2.2 Haskell

2.2 Haskell

Haskell Limerick 3

Our language is state-free and lazy
The rest of the world says we’re crazy

But yet we feel sure
That the pure will endure

As it makes derivation so easy.
Joy Goodman (Glasgow University)

In this section we introduce one paticular language, called Haskell as in [Bir98],
[OSG08] and [HPF00]. We will use Haskell in Chapter 4 to implement our interpreter.

Haskell4 is a purely non-strict functional programming language, named after the
mathematician and logician Haskell Brooks Curry. Haskell was designed in the late
1980s as a research language for functional programming [Mic88]. Modularity, built-
in concurrency and parallelism, lazy evaluation, a strong static type system and
polymorphism are important benefits Haskell provides for programmers. We would
like to introduce now some important peculiarities of Haskell in details.

2.2.1 Getting Started with Haskell

Haskell has many implementations, but the most common are an open source compiler
with interactive environment GHCi 5 and an interpreter Hugs 6. Both implementa-
tions include a wide range of libraries with built-in types, polymorphic type system,
functions and modules.

2.2.2 Modularity

A program in Haskell can consists of multiple modules [OSG08]. These modules
declare a set of functions and data type definitions in a closed environment (module).
The module mechanism can export its functions completely or partially and can
import needed functions from other modules. A module definition in Haskell is very
simple:

module name (\textit{export list}) where
(\textit{import list})

For example, we define module Main, export its functions main, parser and import
fuctions from module Lexer, which are declared in the export list in module Lexer:

3http://haskell.org/haskellwiki/Humor/Limericks
4http://www.haskell.org/
5http://haskell.org/ghc/
6http://haskell.org/hugs/

9

2 Background

Type Name Example
Integers (limited range) Int 15
Integers (infinite range) Integer 4654621363
Reals Float 3.1415927
Booleans Bool True
Characters Char ’a’
Strings String "Hello world!"
List [a] [1,2,3] [Integer]
Tupel (a1, a2) (’a’, 1) (Char, Integer)

Figure 2.1: Some data types in Haskell

module Main (main, parser) where
import Lexer
...
main = ...
parser = ...

The main advantage of the module mechanism is the reusability of functions inside
a program. It also provides a better control over export and import of functions.

2.2.3 Data types

Haskell has various basic and constructed types, which are built-in in Haskell standard
library Prelude. Figure 2.1 [OSG08] shows some of these types. Types List and Tupel
are polymorphic types, they are defined for every type a, for example, Integer, Int,
Char, as shown in Figure 2.1. a, a1, a2 are called type variables.

Haskell allows programmers to define their own types using a data declaration. For
example, we can define a new data type Expression for λ-calculus as follows:

data Expression = V Var
| Lambda Var (Expression)
| Application Expression Expression

Type Expression (ot type constructor) has three date constructors as values: Var,
Lambda Var (Expression) and Application Expression Expression. data Expression
is also a recursive data type, hence the data constructors Lambda Var (Expression)
and Application Expression Expression are built using recursive calls of Expression.

User-defined types can also be polymorphic. For example, we define a binary tree
type [HPF00]:

data Binarytree a = Leaf a
| Branch (Binarytree a) (Binarytree a)

10

2.2 Haskell

This type is polymorphic, its values might be of any type a, for example Integer,
Int or Char.

2.2.4 Function definitions

Simple functions in Haskell are declared as equitations:

square x = x * x

When functions have several cases, they can be declared using an if then else
construct, guards, a case-construct or pattern matching [RL99].

if-then-else construct

This conditional construct is used in Haskell inside the function, for example, the
factorial function fact n :

fact n = if (n==0)
then 1
else n * fact (n-1)

Guards

Guards is a boolean expression, consisting of several equitations with values. If any
of these equitations will be evaluated to True, then the function returns a value of
this condition. For example, again the factorial function:

fact n | n == if (n==0)
| otherwise = n * fact (n-1)

Pattern matching

Haskell allows only "one-way"matching without backtracking, as, for example, in
Prolog. Pattern matching is very practical in the declaration of recursive functions.
It looks like a set of equitations of the same function but for different arguments.
The factorial function can be defined using pattern matching as follows:

fact 0 = 1
fact n = n * fact (n-1)

The first equitation defines a case, which matches the argument with pattern 0,
and this match will only succeed when the argument has the value 0. The second
equitation covers all arguments by matching against the pattern n, so this match will
always succeed.

11

2 Background

For more convenient use of pattern matching Haskell offers two syntactic sugar con-
structs: as-patterns (@) and wild-cards (_) [Jon03]. As-patterns label whole argu-
ments or their parts as a single variable that makes a programm code shorter and
clearly represented. For example, we can define a function that duplicates the first
element in a list as :

f (x:xs) = x:x:xs

or using the as-pattern with a label s as follows:

f s@(x:xs) = x:s

The other construct, wild-card, is used to match against a value we do not care about,
i.e. any argument value will match a pattern. For example, for list functions head
and tail only one argument is essential and no matter how the other argument looks
like:

head (x:_) = x
tail (_:xs = xs

Case construction

The case construction in Haskell is another possibility of matching, but matching over
values of arguments. For example, an evaluation of function for different expressions
may be written as:

evaluate e = case e of
(V Var) -> Var;
(Lambda Var (Expression) -> ...

Sometimes functions need a local scoping in their definitions [Jon03]. For this purpose
Haskell provides let expressions and where clauses:

let x = 3 + 2
y = 5 - 1

in f x y

f x y | y > z = ...
| y == z = ...
| y < z = ...

where z = x * x

2.2.5 List comprehensions

List comprehensions is another syntactic sugar construct for creation of lists. List
comprehensions have the form:

12

2.2 Haskell

[e | q_1, ... , q_n]

e is a generated expression, and q_1, ..., q_n are qualifiers. A qualifiers can be a
generator of form x <- exp, or a boolean expression. As an example we consider a
function pairs with two generators:

pairs xs ys = [(x,y) | x <- xs, y <- ys]

returns

pairs [1,2,3] [4,5]
[(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)]

and with one generator and one boolean expression:

[x | x <- [1..10], even x]

returns

[2,4,6,8,10]

2.2.6 Monads

In the previous section we mentioned absence of side-effects as a great advantage of
functional languages. But in some cases, for example, in input-output functions side-
effects are needed. For such special cases Haskell provide a monad concept, based on
a mathematical notion of monad in category theory.

In Haskell monads are used to build a sequence of actions. Monadic computation is
described using a data type for which two main operations (>>=) and return are
defined in the Monad type class [HPF00]:

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

(>>) :: m a -> m b -> m b
m >> k = m >>= _ -> k

fail :: String -> m a
fail S :: error s

The operation return returns a value without any effect, the operation (>>=) is
called bind-operator and combines computation when a value is passed from one
computation to another. The other operation (>>) is used in expressions of (>>=)
to combine two computations when the second does not need the value of the first
one. The operation fail is used to raise an error.

For example, consider the following three functions: f1 is a list comprehension, f2 is
a function with do-notation and f3 is a monadic function. All these functions have

13

2 Background

the same functionality - to compute the Cartesian product of two sets [1,2,3] and
[1,2,3] [HPF00]:

f1 = [(x,y) | x <- [1,2,3] , y <- [1,2,3], x /= y]

f2 = do x <- [1,2,3]
y <- [1,2,3]
True <- return (x /= y)
return (x,y)

f3 = [1,2,3] >>= (\ x -> [1,2,3] >>= (\y -> return (x/=y) >>=
(\r -> case r of True -> return (x,y)

_ -> fail "")))

Cartesian product: [(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)]

—————————————

We could see that Haskell is a very powerful functional programming language and
efforts in its improving are still ongoing. Haskell was extended with concurency mech-
anisms to Concurrent Haskell 7, to Parallel Haskell 8 and Mobile Haskell [BTL05]
wxHaskell9 provides Haskell with a portable and native GUI library. More informa-
tion about Haskell projects and Haskell news can be found on the Haskell homepage
http://haskell.org/.

2.3 λ-Calculus

The λ-calculus is a very simple but powerful fomal system, invented by the logi-
cian Alonco Church in the 1930s to study functions, function application and re-
cursion [Mic88]. The syntax of pure λ-calculus is short and simple, but it can be
extended with different syntactic layers, for example, for constants, constructors, in-
tegers, booleans, recursions or processes in acordance with the application purpose.
In Chapter 3 we will introduce the calculi λ(fch) and λ(fchb), extended λ-calculi with
type constructors, processes and concurrency primitives.

2.3.1 Syntax of the Pure λ-calculus

The syntax of pure untyped λ-calculus is very simple and defined as follows [Sab08]:

e ∈ Exp :: x | λx.e | (e1 e2)

x ∈ V ariables

7http://www.haskell.org/haskellwiki/GHC/Concurrency
8http://haskell.org/haskellwiki/GHC/Data Parallel Haskell
9http://haskell.org/haskellwiki/WxHaskell

14

2.3 λ-Calculus

Expresstions (or terms) of the form λx.s are called abstractions. An abstraction is
an anonymous function that binds the variable x within the λ-term s, i.e. the scope
of the variable x is the term s. For example, the identity function can be represent
in the λ-calculus as follows [Han04]:

λx.x

Expressions of the form (s t) are called applications and used to apply a function to
its arguments. Applications are assumed to be left associative, so that (e1 e2 e3) is
the same as ((e1 e2) e3). For example, suppose the identity function is applied to
itself:

(λx.x λx.x)

Variables that occur in the scope of λ-term are called bound, all other variables are
called free. The set of bound variables BV (e) and the set of free variables FV (e) of
an expression e can be inductively defeined as follows [Sab08]:

FV (x) = x BV (x) = 0

FV (λx.s) = FV (e) \ {s} BV (λx.e) = BV (s) ∪ {x}

FV (s t) = FV (s) ∪ FV (t) BV (s t) = BV (s) ∪ BV (t)

If FV (s) is an empty set, we call s a closed term, or combinator, otherwise s is an
open term.

For example, consider the expression [Mic88]

λy.xxy

with FV (λy.x xy) = {x} and BV (λy.x xy) = {y}, so the term λy.x xy is open.

2.3.2 Operational Semantics of the Pure λ-calculus

The operational semantics determines the way a program is to be executed, and
consists of reduction rules and reduction contexts. To introduce the operational
semantics of the pure λ-calculus we need to define first the notions of substitution
and context [Sab08].

Substitution is the process of replacing all free occurrences of the variable x in s with
the term t, written s[t/x]. Substitution can be inductively defined as follows [Sab08]:

x[t/x] = t

y[t/x] = y, if x 6= y

(λy.s)[t/x] = λy.(s[t/x])

(s1 s2)[t/x] = (s1[t/x] s2[t/x])

and x /∈ BV (s).

15

2 Background

Contexts are terms where a subterm is replaced by the constant [·], called the hole
marker. The hole marker points where the reduction can take place within a term.
The contexts C for λ-terms can be defined as follows [Sab08]:

C = [·] | λx.C | (C e) | (e C)

Reduction Rules

The operational semantics of Tthe pure λ-calculus includes three kinds of reduction
rules (or conversions) [Sab08]:

(1) α-reduction or α-renaming

(2) β-reduction

(3) η-reduction

(1) α-reduction is used for renaming of bound variables. This renaming is needed to
avoid unintended catching of variables during substitution. We define α-reduction as
binary relation [Sab08]:

C[λx.s] α→ C[λy.s [y/x]] if y /∈ BV (λx.s) ∪ FV (λx.s)

The reflexive-transitive closure of α→ is called α-equivalence. For example, we substi-
tute the term

(λx.x y) {x / t}

To avoid misunderstandings we apply α-reduction:

(λz.z y) {x / t} and z /∈ BV (λx.x y)

(λx.x y) and (λz.z y) are α-equivalent

Now we substitute:

λz.z x

(2) β-reduction is used for applying functions to their arguments and defined as
[Sab08]:

C[(λx.s) t] β→ C[s [x/x]]

(λx.s) t is also called redex 10, an expression that matches the left hand side of a
reduction rule.

For example, consider the following β-reduction:

(λx.λx.x) z → λz.z

10An acronym for reducible expression.

16

2.3 λ-Calculus

(3) η-reduction is also called an axiom of extensionality. This rule says that two
functions are the same if and only if they give the same result for all arguments. The
formal definition of η-reduction is [Sab08]

C[s] η→ C[λx.s x], x /∈ FV (s)

Reduction Contexts

We introduce now reduction contexts and reduction rules of the pure λ-calculus for
applicative order (or call-by-value) and normal order (or call-by-name) reductions as
set out in [Sab08].

(1) Reduction contexts (R) and reduction rules for call-by-name strategyare defines
as:

Rcbn ::= [·] | (Rcbn t)

Rcbn[(λx.s) t] → Rcbn[s[t/x]]

The pure λ-calculus with call-by-name strategy is also called the lazy (call-by-need)
λ-calculus. The result values of call-by-name strategy are abstractions for closed
terms and a set of weak head normal forms for open terms.

A λ-expression is in weak head normal form (WHNF) if it is a head normal form
(HNF) or any abstraction. A λ-expression is in head normal form if neither a β-
reduction nor an η- reduction is possible. Some examples of HNFs are [Han04]:

- λx.x

- λxy.x

- λxy.x ((λz.z)y)

(2) Reduction contexts and reduction rules for call-by-value strategy are defines as:

Rcbv ::= [·] | (Rcbv t) | ((λx.s) Rcbv)

Rcbv[(λx.s)(λy.t)] → Rcbv[s[λy.t/x]]

The values of call-by-value strategy are the same as in the call-by-name one.

As an example we evaluate the following λ-expression usig both strategies [Sab08]:

(λx.x x)((λy.y)(λz.z)).

call-by-value:

(λx.x x)((λy.y)(λz.z))

→ (λx.x x)(λz.z)

→ (λz.z) (λz.z)

→ (λz.z)

17

2 Background

call-by-name:

(λx.x x)((λy.y)(λz.z))

→((λy.y)(λz.z))((λy.y)(λz.z))

→ (λz.z)((λy.y)(λz.z))

→ (λz.z) (λz.z)

→ (λz.z)

More details about evaluation strategies in the λ-calculus can be found for example
in [Bar84]

2.3.3 Extensions of the λ-calculus

To provide the pure λ-calculus with a type system it can be extended with data
constructors (for example boolean oder list conctructors) and typed case-expressions.

The set of data constructors c ∈ Constr can be defined as [Sab08]

c ∈ Constr := {c(x1,...,xar(c))} , where ar(i) is the fixed arity of a constructor ci.

We consider list constructors c1(x1, x2) (Cons) with arity 2, and constructor c2 (Nil)
with arity 0. The application of constructors to the term λx.x results a list:

(c1 (λx.x) c2) → [λx.x] or in the other form ((λx.x):[])

An extension with case-expression provides λ-calculus with conditional constructs. A
case-expression with patterns and alternatives has the following form [Sab08]:

case s ((c1(x1,1,...,x1,ar(c1)) → s1) . . . (cn(x1,n,...,xn,ar(cn)) → sn)),

where (ci(x1,...,xar(ci))→ si) is a case-alternative consisting of a pattern ci(x1,1,...,xi,ar(ci))
and an expression si. Patterns are constructor application with pairwise distinct vari-
ables as arguments. These variables are bound in s.

The β-reduction for case-expression can be defined as follows [Sab08]:

C[case (ci t1...tar(ci))...((ci xi,1...xn,ar(ci)) → si)...]

−→ C[si[t1/xi,1,...,tar(ci)/xi,ar(ci)]]

The evaluation of this case-β-rule invokes pattern matching of the expression s by
patterns. When a suitable pattern is found, the evaluation results with substitution
of variables by the actual parameters within an assosiated alternative.

The λ-calculus can also be extended with recursion, concurrency and non-deterministic
constructs. More details about other extensions can be found for example in [Sab08],
[Han04] and [Bar84].

18

2.4 Concurrent Programming

2.4 Concurrent Programming

Since the focus of this master’s thesis is on the implementation of concurrency primi-
tives, we would like to give now an overview about concurrent programming, its basic
mechanisms and its importance in the modern world of computing.

2.4.1 What is concurrent computing?

The modern computing involves more and more systems with components which are
concurrently active, i.e. they have an interactional behaviour. So much softwares
today are structured as concurrent programs. The branch of computer science which
studies this interactional behaviour of computing systems is called concurrent com-
puting. Concurrent computing was already introduced in the mid 1960s by E.Dijkstra,
T.J. Dekker, P.B. Hansen and C.A.R Hoar and develops rapidly nowadays [Han02].

The notion of interaction is fundamental in concurrent computing. There are two
types of interactions: physical and virtual. Physical interactions communicate with
each other via physical touching, so called "handshaking". A cash machine or a
ticket vending machine are examples of physical interaction systems. Communication
between virtual interactions is effected via virtual links, for example, the linking
between pages in the internet. Both physical and virtual interactions could be applied
to hardware or software systems. In our work we concern ourselves with virtual
interactions in concurrent programs [Sch97].

A concurrent programm is composed of two or more independent sequential pro-
gramms or threads, called processes. The processes can be executed sequentially on a
single processor by the use of interleavings, or in parallel on a set of processors. The
oldest examples of concurrent programs are operating systems, they consist of lots of
independent processes for controlling hardwares and user activities [Sch97].

The following advantages brought concurrent programs so much popularity [BA06]:

• due to its independency, the processes can be executed in a partial order, that
provides the improved flexibility in the whole program (sequental programs
force a total order in their execution),

• therefore concurrent programs can be executed in less real time,

• their execution is non-deterministic,

• they support user interaction with applications, therefore they are widely used
in reactive systems,

• concurrent programs enable interaction between processes via concurrency prim-
itives,

• multiple threads controll every interaction in the program, that improves the
manageability of this program.

19

2 Background

But concurrent programs have some disadvantages as well [BA06]:

• they are less safe,

• non-determinism can lead to exponential number of interleavings,

• parallel execution can be a reason for deadlocks,

• and finally, concurrent programs can be very expensive.

2.4.2 Concurrency primitives

Any concurrent language is based on a sequential language, extended with different
concurrency primitives. Concurrent ML 11 and Concurrent Haskell 12 are examples
of such extention on concurrency. Concurrency primitives are typically divided into
three kinds [Rep99]:

• concurrency primitives for introducing sequential threads or processes,

• concurrency primitives for supporting communication between processes,

• and cconcurrency primitieves to enable synchronization between processes.

There are also some concurrent primitives, which combine the properties of two or
even three kinds. For example, channels in Concurrent ML support the language
with communication and synchronization, or futures in Multilisp 13 and Alice ML 14,
which combine all three properties into a single concurrency primitive.

Processes

As already described, processes are sequential programs, that can be executed in a
partial order. Their number in a concurrent program can be restricted or they can
be created in a program run-time if needed. Prosesses are used in many concurrent
languages, for example, in Concurrent ML, Concurrent Haskell, Java 15. Processes in
concurrent computation are modeled in accordance with π-calculus, a process calcu-
lus.

The π-calculus was developed by Robin Milner in the late 1980s as a formal language
for for describing and analizing concurrent computational processes.

We can describe the interaction within processes as follows: pairs of processes pro-
vide synchronized communication with each other by sending and receiving messages
through complementary channels. The content of messages is also channels. The
11http://cml.cs.uchicago.edu/
12http://www.haskell.org/haskellwiki/GHC/Concurrency
13http://en.wikipedia.org/wiki/MultiLisp
14http://www.ps.uni-sb.de/alice/
15http://www.java.com/de/download/manual.jsp

20

2.4 Concurrent Programming

recipient process reseives a channel and uses this channel for further communication.
For more information see [Par01] or [Mil99].

Communication

Communication between processes is very important for their cooperation within a
program. Communication allows one process to exchange data with another one, or to
have influence over the execution order. Communication primitives are, for example,
shared buffers in Java. Working of a shared buffer is very simple: one process writes
values into the buffer, the other process reads them.

To avoid asynchronous communication, communication primitives are mostly used
together with synchronization primitives or combine the both properties as, for ex-
ample, channels in Concurrent ML [Rep99].

Channels in Concurrent ML are implemented through two functions, which create an
event between a sender and a receiver:

val send : ’a chan * ’a -> unit
val recv : ’a chan -> ’a

Communication in the channel is synchronous, both processes must communicate
with each other before they go on.

Synchronization

Proper communication between processes can not work without synchronization.
Asynchronous communication can lead to deadlocks or erroneous program execu-
tions. Semaphores are widely used synchronization primitives. Semaphores restrict
access to shared resources during execution, for example, shared memory.

Another example of synchronization primitives is a concurrent primitive MVar in
Haskell [SPJ96]. This primitive has type:

type MVar a

The value of type MVar t is the name of a mutable location that can be empty or
contain a value of type t. The MVar primitive is implemented using three functions:

newMVar :: a -> IO (MVar a) creates an new location with the supplied value.

takeMVar :: MVar a -> IO a return the contents of the MVar, if the location is
currently empty, takeMVar waits until it is full, then takes takeMVar and leave the
location empty.

putMVar :: MVar a -> a -> IO () puts a value into an MVar, if the location is
currently full, putMVar waits until it becomes empty.

21

2 Background

In Chapter 3 we introduce some more concurrency primitives, such as handles, futures
and buffers, the concurrency primitives of the calculus λ(fchb).

22

3 Equivalence of Handled Futures and
Buffers

In this chapter we introduce the calculi λτ (fc) and λτ (fchb) as set out in [SSNSS08].
We begin with the description of the calculus λτ (fc), a typed concurrent λ-calculus
with type constructors and futures. Further we extend it with concurrent handles
and concurrent buffers and result in the calculus λτ (fchb) with subset calculi λτ (fch)
and λτ (fcb). Finally, we introduce adequate translations of concurrent handles and
concurrent buffers, using which they can replace one another keeping the same ex-
pressiveness.

3.1 The Calculus λτ (fc)

We introduce now the calculus λτ (fc), a typed call-by-value lambda-calculus with
futures, polymorphic data and type constructors, concurrent threads and reference
cells from [SSNSS08]. The calculus λτ (fc) is a syntactic extension of the calculus λ(f),
a simple typed λ-calculus with futures1 as synchronization concurrency primitives
designed in [NSS06].

A future is defined as a place-holder for a value of some evaluated expression in a
concurrent program. This value is unknown until the expression is evaluated. Once
the evaluation happens and the value becomes available, the associated future is
identified with this value, i.e. the future is globally replaced with the value. The
value can be a future on its own as well. Such concurrency mechanism together
with another concurrency primitive handle (or handled future) provides implicit and
data-driven thread synchronization within a concurrent program: futures together
with handles couple concurrent threads and provide their eager evaluation as soon
as the value becomes available or keep them waiting for it. [Ali, NSS06] We describe
handled futures in Section 3.2.

The calculus λτ (fc) is simply-typed including recursive polymorphic type construc-
tors (which must be used monomorphically). In our thesis we intended omit typing
and the label τ , as we implement an untyped interpreter. A weak type restriction
on case-expressions is guaranteed by the syntax (see Chapter 4). For every type
there we defien a single casetype construct, which ensures that the case-alternative are

1The calculus λ(f) is a core language of Alice ML (http://www.ps.uni-sb.de/alice/)

23

3 Equivalence of Handled Futures and Buffers

exhaustive. The complete description of typing and typing rules could be found in
[SSNSS08]. The type checking in case-expressions will be observed in Chapter 4.

3.1.1 Syntax of λ(fc)

The calculus λ(fc) is an abstract model for concurrent programming and consists
of multiple processes (or threads), which are to be executed in parallel, but the
execution within processes is sequential. The syntax of λ(fc) is shown in Figure 3.1,
and as in most concurrent programming languages it consists of two layers: a layer
of expressions e and a layer of processes p.

e ∈ Exp ::= x | c | λx.e | e1e2 | exch (e1, e2) | k(e1, ..., ear(k))
| casek e of π1 ⇒ e1 | ... | πm ⇒ em

v ∈ V al ::= x | c | λx.e | k(e1, ..., ear(k))
c ∈ Const ::= cell | thread | lazy | unit
p ∈ Proc ::= p1|p2 | (νx)p | x c v | | x

susp⇐ e
π ∈ Pat ::= k(e1, ..., ear(k))

Figure 3.1: Syntax of λ(fc), where x ∈ V ar and m ≥ 0

The layer of expressions e ∈ Exp contains standard λ-expressions (variables, abstrac-
tions and applications described in Chapter 2), constants, constructors, exch- and
case-expressions:

Values. Values are defined as in call-by-value λ-calculus as standard λ-expressions,
constants and constructors: v ∈ V al ::= x | c | λx.e | k(e1, ..., ear(k)) and V al ⊂ Exp.

Constructors. Each constructor k has the form k(e1, ..., ear(k)) with its fixed ar-
ity. For example, Pair (e1, e2) is a pair constructor with arity 2, True is a boolean
constructor with arity 0.

exch-expression exch (e1, e2) provides an atomic exchange of values within a cell.
For example, the expression exch (x, v) will exchange a current value in a reference
cell x for a value v.

case-expressions are typed in the calculus λ(fc). Its patterns π ∈ Pat have the
form k(x1, ..., xar(k)), where all variable xi are different. The patterns must be non-
overlapping and exhaustive within a case-expression. The following example shows
a valid case-expression (1) with list-patterns and a non-valid case-expression (2) with
overlapping boolean-patterns:

(1) caseList e of Nil ⇒ True| (x:xs) ⇒ False

(2) caseBool e of True ⇒ e1 | True ⇒ e2

24

3.1 The Calculus λτ (fc)

Constants. We use four higher-order constants for creating new components within
expressions. The constants thread and lazy introduce eager threads and lazy threads
with futures, respectively. For example, an application (thread v) spawns a new
thread to bind a value v to a future. Analogical to thread the constant cell is used
for creating new reference cells: (cell v) creates a new cell with value v. The constant
unit is used as a dummy value.

The layer p ∈ Proc is a layer of processes. The process p can contain one or more
components executed in parallel (p1 | p2), but it can also create new components
in run-time with a new name operator (νx)p. These actions succeed in accordance
with the process syntax of π-calculus and the rules of structural congruence shown
in Figure 3.2.

p1 | p2 ≡ p1 | p2 - commutativity of parallel processes
(p1 | p2) | p3 ≡ p1 | (p2 | p3) - associativity of parallel processes
(νx)(νy)p ≡ (νy)(νx)p - multiple communication scopes
(νx)(p1) | p2 ≡ (νx)(p1 | p2) , x /∈ fv(p2) - scope extrusion

Figure 3.2: Structural congruence of λ(fc)-processes

The basic process components are eager and lazy threads and reference cells:

Eager threads. Eager threads in the calculus λ(fc) are concurrent components of
the form x ⇐ e, where x is a concurrent future and e is an expression. The task of
an eager thread x ⇐ e in a prosess p is to bind a concurrent future x to a value of
the expression e, if the evaluation of e terminates. The value of e can be another
future as well, for example, x ⇐ y | y ⇐ e. Eager threads x ⇐ e are also considered
as recursive equitations x = e (directed as e = x) [NSS06].

Lazy threads. Lazy (or suspended) threads x
susp⇐ e are concurrent componets as

well. They are called lazy, because they start their computation only if the value of
the future x is required, x is called here a lazy future. In that case, the status lazy
will be changed to eager and the threads will behavior as eager threads in the next
evaluation step.

Reference cells. We define reference cells in the calculus λ(fc) as usual storage
locations for values: x c v means, that the reference cell x is associated a with a
value v.

3.1.2 Variable Bindings and Well-Formedness

In accordance with the syntax of the the calculus λ(fc) we derive only two binding
constructs for variables: λ-binders and new name operators (νx). All introduced
variables are to be bound. For example, we consider two processes p1 and p2. The

25

3 Equivalence of Handled Futures and Buffers

process p1 is closed, and the process p2 is open, because the variables y and w are
not bound:

(1) p1 = (νx)(νy)(x ⇐ λz.z | y b x)

(2) p2 = (νx)(x ⇐ λz.w | y b x)

For creation of new components and α-renaming we define sets of free variables fv(e)
and fv(p) for expressions and prosesses respectively.

We define also a well-formedness rule for processes in the calculus λ(fc): a process is
well-formed, if none of its components introduce any variable more then once. For
example, we consider again two processes p3 and p4. The process p3 is well-formed,
all the variables in the components are unique; the process p4 is not well-formed, the
variable x is used in the thread and in the reference cell:

(3) p3 = (νx)(νy)(νz)(x
susp⇐ z | y c v | z

susp⇐ v)

(4) p4 = (νx)(x ⇐ y | x c v | y
susp⇐ v)

3.1.3 Operational Semantics and Contexts of λ(fc)

The operational semantics defines how a program is executed, i.e. how reduction rules
have to be applied to processes. Evaluation contexts are used to specifiy positions in
prozesses where reduction rules are applied. In genereral, contexts are terms terms
where exactly one subterm is replaced with the constant [.], called hole marker.

We describe now the operational semantics of the calculus λ(fc). It is a small-step
semantics, as the evaluation of a process p consists of multiple steps (or reductions)
in accordance with reduction rules shown in Figure 3.5. So we can describe it as a
binary relation p → p′, where p is an initial process and p’ is a process p after one
small-step reduction.

We define two classes of contexts: an expression context C and a process context D.
The hole maker can replace only one subexpresion in the context C, and only one
component in a prosess p in the contex D. The evaluation contexts of the calculus λ(fc)
are shown in Figure 3.4. ECs E are the evaluation contexts for a traditional call-by-
value evaluation of expressions, Future ECs F Future ECs are particular evaluation
contexts which mark the future strict positions, i.e. positions which enforce the
evaluation of concurrent and lazy future, and Process ECs D are evaluation contexts
for processes.

As shown in Figure 3.4, the evaluation of expressions can begin only in an eager
thread: E ::= x ⇐ Ẽ or F ::= x ⇐ F̃ ; and involves evaluation contexts Ẽ and F̃ to
execute a small-step evaluation of a program. For example, we consider a process p5:

(5) p5 = (νx)(νy)(x c True | y ⇐ ((λx.x) False))

The hole marker for D context can be positioned only within one of two components:

26

3.1 The Calculus λτ (fc)

ECs E ::= x ⇐ Ẽ

Ẽ ::= [] | Ẽe | vẼ | exch (Ẽ, e) | exch (v, Ẽ)

|case Ẽ of(πi ⇒ ei)
i=1...n | k(v1, ...vi−1, Ẽ, ei+1, ..., en)

Future ECs F ::= x ⇐ F̃

F̃ ::= Ẽ[[]v] | Ẽ[exch ([], v)] | Ẽ[case[] of(πi ⇒ ei)
i=1...n]

Process ECs D ::= [] | p|D | D|p | (νx)D

Figure 3.3: Evaluation contexts of λ(fc)

[.] | y ⇐ ((λx.x)False) or x c True | [.]

The hole marker for C context can be positioned only within an eager thread:

(νx)(νy)(x c True | [.])

(y ⇐ (λx.x) False) matches E ::= x ⇐ Ẽ evaluation context, as ((λx.x) False) is
not a future. So, the following evaluation proceeds with the evaluation context E
and evaluation of ((λx.x) False) with the β-reduction rule (see Figure 3.4 below).

We define reduction rules of the calculus λ(fc) as shown in Figure 3.4.

(β−CBV(ev)) [(λx.e)v] → E[e[v/x]]
(THREAD.NEW(ev)) E[thread v] → (νz)(E[z] | z ⇐ vz)
(FUT.DEREF(ev)) F [x] | x ⇐ v → F [v] | x ⇐ v
(CELL.NEW(ev)) E[cell v] → (νz)(E[z] | z c v)
(CELL.EXCH(ev)) E[exch(z, v1)] | z c v2 → E[v2] | z c v1

(LAZY.NEW(ev)) E[lazy v] → (νz)(E[z] | z
susp⇐ v)

(LAZY.TRIGGER(ev)) F [x] | x
susp⇐ e → F [x] | x ⇐ e

(CASE.BETA(ev)) E[case kj(v1, ..., var(kj)) of (ki(x1, ..., xar(ki) ⇐ ei)
i=1...n]

→ E[ej[v1/x1, ..., var(kj)/xar(kj)]]

Important notes: The reduction rules may be applied only to well-formed
processes. All new binders use free variables z ∈ fv. α-renaming is to be performed

after the following rules: (β−CBV(ev)), (CASE.BETA(ev)) and
(FUT.DEREF(ev)), before applying the next reduction rule.

Figure 3.4: Reduction rules

The reduction rules in Figure 3.4 can be described as follows:

(β−CBV(ev)) is a standard is thecall-by-value β-reduction as we described in Chap-
ter 2, for example:

(νy)(y ⇐ (λx.x)True) → (νy)(y ⇐ True)

27

3 Equivalence of Handled Futures and Buffers

(CASE.BETA(ev)) is a standard case-β-reduction as well:

(νx)(x ⇐ case (Cons x y) of ((Cons z zs) → zs , Nil ⇒ Nil) → (νx)(x ⇐ y)

(THREAD.NEW(ev)) creates a new eager thread with a concurrent future z :

(νx)(x ⇐ thread True) → (νx)(νz) (x ⇐ True | z ⇐ True z) , z ∈ fv(p)

(LAZY.NEW(ev)) creates a new lazy thread with a lazy future z :

(νx)(x ⇐ lazy True) → (νx)(νz) (x ⇐ True | z
susp⇐ True z) , z ∈ fv(p)

(CELL.NEW(ev)) creates a new reference cell z with the value v :

(νx)(x ⇐ (cell False)) → (νx)(νz)(x ⇐ z | z c False) and z ∈ fv(p)

(FUT.DEREF(ev)) is used to derefence the value of a future, if it is needed, i.e the
value of the future will be copied to replace its associetad future in a process, for
example :

(νy)(νx)(y ⇐ x | x ⇐ v → (νy)(νx)(y ⇐ v | x ⇐ v)

(LAZY.TRIGGER(ev)) is also used for the future evaluation context. It requires
to start the computation of a lazy thread, i.e. this lazy thread becomes an eager
thread in the next evaluation step:

(νy)(νx)(y ⇐ x | x
susp⇐ v) → (νy)(νx)(y ⇐ x | x ⇐ v)

(CELL.EXCH(ev)) replaces an actual value of a reference cell value with a new
value v1 and returns the first one v2:

(νx)(νz)(x ⇐ exch(z, v1) | z c v2 → (νx)(νz)(x ⇐ v2 | z c v1)

In Chapter 4 we give more detailed explanation of applying of reduction rules in
different evaluation contexts.

3.2 The Calculus λ(fch)

We extend now the calculus λ(fc) with a new concurrency primitive, a concurrent
handle or a handled future and result in the calculus λ(fch). Handled futures are
basic synchronization primitives in the calculus λ(f) designed in [NSS06]. They are
used to couple futures with values.

The changes in the syntax and operational semantics are shown in Figures 3.5 and
3.6.

The layer of expressions is now extended with a new higher-order constant handle.
This constant is used to create new handles within expressions. The layer of processes
becomes two basic components: handles and used handles:

28

3.3 The Calculus λ(fcb)

c ∈ Const ::= handle ...
p ∈ Proc ::= y h x | y h • ...

Figure 3.5: Syntax extension of λ(fc) for λ(fch)

Handles. Our handle has the form y h x, where y is the name of a handle and x
is the future. This handle y could be used to bind some value to the future x. Each
handle may be used only once.

Used handles. If a handle was alredy used it becomes a used handle. Used handles
have the following form: y h •, where y is the name of a used handle.

We explain now the new reduction rules shown in Figure 3.6 with concurrent handles
and give some examples:

(HANDLE.NEW(ev)) is analogical to the other rules for creating new componets.
It spawns a new concurrent handle z with a new future z’, for example:

(νx)(x ⇐ handle unit) → (νx)(νz)(νz′)(x ⇐ unit z z’ | z’ h z)

(HANDLE.BIND(ev)) uses an existing handle x to bind its future with a value v.
If this binding is successfil, a handle becomes a used handle and can not be used once
more. For example:

(νx)(νy)(νz)(y ⇐ x True | x h z) → (νx)(νy)(νz) (y ⇐ unit | z ⇐ True |x h •)

(HANDLE.NEW(ev)) E[handle v] → (νz)(νz′)(E[vzz′] | z′ h z)
(HANDLE.BIND(ev)) E[xv] | x h y → E[unit] | y ⇐ v | x h •

Figure 3.6: Extension of operational semantics of λ(fc) for λ(fch)

3.3 The Calculus λ(fcb)

We extend the calculus λ(fc) again with another concurrency primitive, with a con-
current one-place buffer, and result in the calculus λ(fcb).

As shown in Figure 3.7, the new syntax is extended with two new higher-order con-
stants buffer and get and a new expression put (e1, e2) for realizing the main actions
of a buffer. The constant buffer is used to create new buffers, the constant get ob-
tains the content of non-empty buffer, and the expression put (e1, e2) stores a new
value e2 on an emty buffer e1.

The new components in the layer of processes are defined as follows:

29

3 Equivalence of Handled Futures and Buffers

e ∈ Exp ::= put (e1, e2) ...
c ∈ Const ::= buffer | get ...
p ∈ Proc ::= x b - | x b v ...

Figure 3.7: Extension of syntax for λ(fcb)

Concurrent buffers. They have the form x b v, where x is the name of a buffer
and v is its content.

Empty buffers. Empty buffers x b - have no content, but the content can be filled
using put-expression.

Figure 3.8. introduces the extensions of E and F contexts and reduction rules. We
explain now the new rules as usually with examples:

(BUFF.NEW(ev)) creates a new empty buffer x:

(νy)(y ⇐ (buffer v) → (νy)(νx)(y ⇐ x | x b -)

(BUFF.PUT(ev)) and stores a value v in an empty buffer with the name x:

(νy)(νx)(y ⇐ put (x, True) | x b -) → (νy)(νx)(y ⇐ unit | x b True)

(BUFF.GET(ev)) searches in the process components for a non-empty buffer with
the name x and obtains its content empting the buffer:

(νy)(νx)(y ⇐ (get x) | x b False) → (νy)(νx)(y ⇐ False | x b -)

(BUFF.NEW(ev)) E[buffer v] → (νx)(E[x] | x b −)
(BUFF.PUT(ev)) E[put(x, v)] | x b − → E[unit] | x b −
(BUFF.GET(ev)) E[get x] | x b v → E[v] | x b −

ECs E ::= put (Ẽ, e) | put (v, Ẽ)

Future ECs F ::= Ẽ[put ([], v)] | Ẽ[get[]]

Important note: get-operation on an empty buffer,
as well as a put-operation on a filled buffer, cannot
be performed. I.e., every thread executing such an
operation blocks until the state of the buffer changes.

Figure 3.8: Extension of operational semantics of λ(fc) for λ(fcb)

30

3.4 The Calculus λ(fchb)

3.4 The Calculus λ(fchb)

We define the calculus λ(fchb) as the calculus λ(fc) with both concurrency primitives,
concurrent buffers and concurrent handles, including their extensions in the syntax
an operational semantics. The calculi λ(fch) and λ(fcb) we consider to be the subset
calculi of λ(fchb).

3.4.1 Successfulness of processes in λ(fchb)

A well-formed process p is successful if all its components are successful: eager threads
are successful if their identifiers are bound via a chain x ⇐ x1 | ... | xn ⇐ v to a
non-variable value, a reference cell, a lazy thread, a handle, a used handle, a buffer or
an empty buffer; the other components are always succesful. For example, consider
the following processes p6 and p7 (we omit here new name operators):

(6) p6 = x ⇐ y | y ⇐ z | z c True

(7) p7 = x ⇐ y | z c True

The process p6 is successful, the process p7 is not successful, its identifier x is bound
to a variable y. Tho following processes are not successful as well [SSNSS08]:

(6) p8 = x ⇐ x

(7) p9 = x ⇐ (λu, v.v) (y unit) | y ⇐ (λu, v.v) (x unit)

The process p9 is a cylic chain or so called black hole, and the process p8 is a dead-
locked process.

3.4.2 Convergence and Divergence of processes in λ(fchb)

We define now predicates for may- and must-convergence and may- and must-divergence
for the calculus λ(fchb).

A process p is may-convergent (p ↓) if there is at least one sequence of call-by-value
small-step reductions p

∗→ p′ and p′ is successful, otherwise p is must-divergent (p ⇑):

p ↓: = ∃p′ (p ∗→ p′ ∧ p′ is successful) ; ¬p ↓ ⇔ p ⇑

A process p is must-convergent (p ⇓) if all reduction successors p′ (i.e. p
∗→ p′) are

may-convergent, otherwise p is may-divergent (p ↑):

p ⇓: = ∀p′ (p ∗→ p′ ⇒ p ↓) ; ¬p ⇓ ⇔ p ↑

A process p is total must-convergent (p ⇓to) if p is must convergent and there is no
infinite reduction p → p1 → p2 → ...

31

3 Equivalence of Handled Futures and Buffers

More information about may- and must-convergence can be found, for example, in
[SSS08] and [Sab08].

3.5 Equivalence of Handled Futures and Buffers

In this section we introduce the mutual encoding of the calculi λ(fcb) and λ(fch) as set
out in [SSNSS08]. We argue that the translations TB : λ (fcb) → λ(fch) from buffers
to handles and TH : λ (fch) → λ(fcb) from handles to buffers are adequate. From
this follows that both concurrency primitives concurrency handles and concurrency
buffers are equivalent and they can replace one another in the same environment (here
the calculus λ (fchb)). The explicit proofs of contextual equivalence and adequate
translations can be found in [SSNSS08]. In Chapter 4 we will present a functional
implementation of both translations and in Chapter 5 present testing results of some
of our statements.

In our encoding we use syntactic sugar shown in Figure 3.9

let x = e1 in e2 := (λx.e2) e1

(e1,e2) := (λ_.e2) e1

λ_.e := λx.e2 and x ∈ fv(e)
(e1,e2,e3) := e1,(e2,e3)
wait e := case e of {True ⇒ True , False ⇒ True}
newhandled := handle λf.λh.〈h, f〉
λ.〈x1, ...xn〉.e := λy. case y of {(x1, ..., xn) ⇒ e} and y ∈ fv(e)
λ.〈〈x1, ..., xn〉, v〉.e := λy. case y1 of {(z, v) ⇒ case z of {(x1, ..., xn) ⇒ e}}

and y ∈ fv(e)

Figure 3.9: Syntatic sugar

3.5.1 Encoding Buffers Using Handled Futures

We begin with the translation TB : λ (fcb) → λ(fch). The translation TB is an
implementation of expressions put, get and buffer and process components buffer
and empty buffers using futures, handles and reference cells, i.e. using the calculus
λ(fch), see Figure 3.9.

We encode a one-place buffer as a tupel of four reference cells:

concurrent buffer =̂ 〈xp c y1, xg c y2, xs c y2, xh c y2〉 where yi ∈ V al

The reference cells xp and xg may contain True or a handled future, but they both
may not contain handled futures or True simultaneously. xp and xg are guards and
take care that the buffer operations put and get are correctly applied.

32

3.5 Equivalence of Handled Futures and Buffers

buffer =̂ λ_. let 〈h, f〉 = newhandled, 〈h′, f ′〉 = newhandled,
putg = cell(true), getg = cell(f),
stored = cell(f ′), handler = cell(h)

in thread λ_.〈putg, getg, stored, handler〉 end

put =̂ λ〈〈xp, xg, xs, xh〉, v〉.
let 〈h, f〉 = newhandled
in wait (exch(xp, f));

exch(xs, v);
(exch(xh, h))(true)

end

get =̂ λ〈xp, xg, xs, xh〉.
let 〈h, f〉 = newhandled
〈h′, f ′〉 = newhandled

in wait (exch(xg, f));
let v = exch(xs, f

′);
in (exch(xh, h))(true); v end

end

x b - 7−→ (νxp)(νxg)(νxs)(νxh) ⇐ 〈xp, xg, xs, xh〉
| (νh)(νf)(νh′)(νf ′)(h h f | h′ h f ′ | xp c True | xg c f | xs c f ’ | xh c h)

x b v 7−→ (νxp)(νxg)(νxs)(νxh) ⇐ 〈xp, xg, xs, xh〉
| (νh)(νf)(xp c f | xg c True | xs c TB (v) | xh c h)

TB(p) =̂ homomorphically wrt. the term structure

Figure 3.10: Translation TB : λ (fcb) → λ(fch)

The reference cell xs is a storage for an actual buffer content, and the referenc cell xh

is handler for a handled future contained either in xp or in xg. So, we can describe
the possible invariants as follows:

- if xp contains a handled future that means the buffer is not empty, so the operation
put can not be applied,

- if xp contains True, then the value in xs is a "gabarge", i.e. the buffer is empty,

- if xg contains a handled future, that means the buffer is empty and the operation
get can not be applied,

- if xg contains True, that means the value in the referenc cell xs is a current value
of the buffer, i.e the buffer is not empty.

33

3 Equivalence of Handled Futures and Buffers

For example, we consider the translation of x b - into the calculus λ(fch) in Figure
3.10. The empty buffer x is implemented as a tupel of four reference cells 〈xp,xg,xs,xh〉
with the following contents :

- xp contains True, as the buffer is empty, and the operation put can be applied,

- xg contains a handled future f, so the operation get will be blocked,

- xs contains a "garbage"value f ’,

- xh contains a handler h, a name of a handle that will bind the future f (h h f)

The encoding of the constant buffer is analocical to the encoding of x b -. It spawns
a new empty buffer in the form of referece cells as well: 〈putg,getg,stored,handler〉.

In the implementation of the operation put (x,v) (or here 〈〈xp,xg,xs,xh〉 , v〉) it is
necessary to make sure that the buffer is empty. This is tested in the expression wait
(exch(xp,f)), if it returns True, then the buffer is empty and the value v will be
stored in xs. After assignig the value xg will be set to True to demonstrate that the
buffer is now not empty and to block the next operation put.

The encoding of the operation get is analogical to the operation put. Here will be
first tested wether the buffer is not empty, i.e. if wait (exch(xg,f)) returns True.
In this case the actuel value of the reference cell xs will be bound to a future with
the handle h and then overwrite with a "garbage"value f ′.

3.5.2 Encoding Handles Using Buffers

In this section we introduce the translation TH : λ (fch) → λ(fcb). The tranlation
TH is given in Figure 3.11 shows how handled futures can be encoded using one-place
buffers.

TH(handle) =̂ λx. let f ′ = buffer unit
f = lazy (λ_. let v = get f ′ in put (f ′, v) ; v)
h = thread (λ_.λz.put (f ′, z))

in x f h end

TH (h h f) =̂ (νf ′)(f susp⇐ let v = get f ′ in put(f ′, v); v | f ′ b - | h ⇐ λz.put(f ′, z))

TH(h h •) =̂ h
susp⇐ h

TH(p) =̂ homomorphically wrt. the term structure

Figure 3.11: Translation TH : λ (fch) → λ(fcb)

34

3.5 Equivalence of Handled Futures and Buffers

In the encoding of a handled future h h f we use an empty buffer, a lazy thread and
the buffer operations. The use of an empty buffer f ′ b - together with the operation
put(f ′, v) simulates a binding of the future f to the buffer f ′. The expression put
(f ′, z) is a cyclic action and provides that the buffer stays filled. A lazy thread is
used to express that the handle is not used.

In the encoding of a used handle h h • we use a lazy thread as well and in consider
that evaluation of h

susp⇐ h is not successful, exactly as an attempt to use a used
handle.

The implementation of the constant handle is similar to the implementation of a
hadled future. This implemantation spawns a new empty buffer, which will be filled
using the put operations as well.

35

3 Equivalence of Handled Futures and Buffers

36

4 An Interpreter for the Calculus λ(fchb)

In this chapter we describe a functional implementation of an interpreter for the
calculus λ(fchb) and call our interpreter Ifchb. First, we discuss the functional spec-
ification and design of our interpreter program and give further the detailed descrip-
tion of its implementation usung the functional programming language Haskell. Our
implementing approach is based on the techniques for implementation of functional
programming languages described in [JL92], [SS207] and [Tra91]. Before we start with
the implementation we give an overview about interpreters and interpreter design.

4.1 What is an interpreter?

In order that programs in a certain programming language may be executed on a
computer, that language must be made availiable , or implemented, on the particular
type of computer. This may be achieved in various ways. Implementations are mainly
divided into interpreters and compilers.

What is an interpreter? An interpreter is a computer program that performs the
instructions of another program written in source code. The execution of the in-
structions succeeds one by one and without transformation of the source code into
a machine code, as compilers do, but directly or after its transformation into a less
complex intermediate code, for example, an abstract syntax tree or a parse tree. In
both cases the execution succeeds in run-time [WM95].

Interpreters have their advantages and disadvantages: on the one hand, they run
more slowly and need more memory as compared to compilered languages; but on
the other hand, interpreted languages provide excellent debugging support, they are
much easier to build and their code is smaller. Platform independence and high
degree of security make interpreted languages suitable for Internet and web-based
applications [WM95].

The most common interpreted languages are Java, Python, Perl, PHP, Lisp, IDL,
Basic and Cobol.

37

4 An Interpreter for the Calculus λ(fchb)

4.2 Interpreter design

As we already mentioned, there are interpreters that execute a program directly, we
call such interpreters pure interpreters. But most interpreters execute a program
after some code optimization.

The code optimization includes lexical, syntax and semantic analyses, in the way,
they are used in compiler design. Figure 4.1 represents the phases of the interpreter
design. The detailed description of all phases we give in the next sections.

4.3 Implementation of Ifchb

First of all we should define a functional specification of our software. We imple-
ment an interpreter for the calculus λ(fchb) introduced in Chapter 3. Our inter-
preter Ifchb has to be able to encode concurrency primitives of the calculus, pro-
vide translations described in Section 3.5 and evaluate a program. We are go-
ing to implement our software in already described functional programming lan-
guage Haskell and explain its implementation step by step. The complete program
code of Ifchb can be found under the following link: http://www.ki.informatik.uni-
frankfurt.de/diplom/programme/owenge.tar.gz.

Our interpreter software consists of eleven modules: Syntax, Lexer, Parser, SemAnal-
ysis, Transformation, Evaluation, ReductionRules, EncodingFCH, EncodingFCB,
Decoding and Inrepreter. These modules corresponds with certain phases of the
interpreter design shown in Figure 4.2.

4.3.1 Module Syntax

First of all, we need to define data structures for the Ifchb in accordance with the
calculus λ(fchb) described in Chapter 3.

data Proc is the data structures for fchb-prosesses. The Ifchb programm can have
one or more process. We decode these processes as follows:

data Proc =

Parall Proc Proc parallel processes (p1| p2)
| New Var Proc new process operator (νx) p
| Cell Var Exp reference cell x c v
| Thread Var Exp thread x ⇐ e

| Lazythread Var Exp lazy thread x
susp⇐ e

| Handle Var Var handle y h x
| Usedhandle Var used handle y h •
| Buffer Var Exp buffer x b v

38

4.3 Implementation of Ifchb

Interpreter

Source

code

Executions

results

Interpreter

Source

code

Executions

results

Lexical

analyzer

Syntax

analyzer

Semantic

analyzer

C
o
d
e
 o
p
tim
iz
a
tio
n

Pure interpreter Interpreter with code

optimization

Figure 4.1: Interpreter design

39

4 An Interpreter for the Calculus λ(fchb)

Interpreter

(evaluation)

Source code

Execution

results

Lexical analyzer

Syntax analyzer

Semantic analyzer

Syntax tree

[Proc]

Syntax tree

[Proc]

Stream of

tokens [Token]

Syntax tree

[Proc’]

Code transformation
Syntax tree

[Proc]

Syntax tree

[Proc]

Encoding

fcb -> fch

Encoding

fch -> fcb

Figure 4.2: Design of Ifchb

40

4.3 Implementation of Ifchb

| Emptybuffer Var empty buffer x b −

In the same way we define data Exp and data Alts, the data structures for fchb-
expressions and case alternatives:

data Exp =

V Var variable
| CCell constant cell
| CThread constant thread
| CHandle constant handle
| CLazy constant lazy
| CUnit constant unit
| CBuffer constant buffer
| CGet constant get
| Lambda Var (Exp) λx.e
| App Exp Exp application e1 e2

| Exch Exp Exp exch (e1, e2)
| Put Exp Exp put (e1, e2)x
| Constr Int Int Int [Exp] constructor
| Case Exp [Alts] case e of alternatives

data Alts =

Alt Int Int Int [Var] Exp case alternative (constructor)

As you see, we decoded the constructors and case alternatives into the form:

Constr Int Int Int [Exp] or Alt Int Int Int [Var] Exp

The first two integers Int provide uniquely identification of constructors or alertna-
tives: the first integer implies the type, the second integer is a number to distinguish
constructs or alternatives of the same type. The third integer implies their arity,
i.e. it tells how many argumets they take. This form is easily manageable and very
efficient for the syntax analysis we realize in the module Parser.

Finally, we define the type for identifiers:

type Var = String

The Ifchb data structure is now finished and we can start with the code analysis.

4.3.2 Module Lexer

The module Lexer carries out the lexical analysis of our source program. It reads
the source program in the form of character string once only from left to right and

41

4 An Interpreter for the Calculus λ(fchb)

converts it in linear-time into a sequence of lexical units (tokens). There are two
basic techniques for recognizing tokens: using a finite state atomaton or constructing
an ad hoc lexical analyzer by hand. Both techniques are based on the specification
of the tokens through regular expressions [GBJL00].

Our lexical analyzer is written by hand and recognizes six classes of tokens: identifier,
constant, keyword, string-literal, operator and punctuator. Such charakters as <eb>,
<n>, /t, <s= are string-literal tokens, and (,), {, } and , (comma) are punctuator
tokens.

Figure 4.3 shows the token data structure. Each token has three arguments. The
first argument is a token name, the second argument is a position (line, column) of
a token in the input program. The last argument represents an integer or a name of
identifier.

The marking of the position is very helpful for troubleshooting, therefore we also
define functions getPos and printToken. The function getPos returns the position
of a token and the function printToken converts a token into its source code string:

getPos :: Token -> Position
getPos (TokInt x y) = x
getPos (TokVar x y) = x
getPos (TokTrue x)=x
getPos (TokSusThread x) = x
getPos (TokNew x) = x
getPos (TokCell x) = x
getPos (TokHandle x) = x
getPos (TokUsedHandle x) = x
getPos (Error x) = x ...

printToken :: Token -> String
printToken (TokInt x y) = show y
printToken (TokVar x y) = y
printToken (TokTrue _) = "True"
printToken (TokSusThread _) = "<s="
printToken (TokNew _) = "<n>"
printToken (TokCell _) = "<c>"
printToken (TokHandle _) = "<h>"
printToken (TokUsedHandle _) = "<_>"
printToken (Error _) = "" ...

For example, consider the following function calls:

*Lexer> getPos (TokTrue (1,6))
(1,6)
*Lexer> printToken (TokTrue (1,6))
"True"

42

4.3 Implementation of Ifchb

data Token = TokInt Position Integer -- integer
| TokVar Position String -- identifier
| TokTrue Position -- True
| TokFalse Position -- False
| TokNil Position -- []
| TokCons Position -- :
| TokCCell Position -- cell
| TokCThread Position -- thread
| TokCHandle Position -- handle
| TokCLazy Position -- lazy
| TokCUnit Position -- unit
| TokCBuffer Position -- buffer
| TokCGet Position -- get
| TokExch Position -- exch
| TokPut Position -- put
| TokCase Position -- case
| TokOf Position -- of
| TokComma Position -- ,
| TokCBOpen Position -- {
| TokCBClose Position -- }
| TokArrow Position -- ->
| TokLam Position -- \\ (lambda)
| TokBOpen Position -- (
| TokBClose Position --)
| TokThread Position -- <= (thread)
| TokSusThread Position -- <s= (lazy thread)
| TokNew Position -- <n> (new)
| TokCell Position -- <c> (cell)
| TokHandle Position -- <h> (handle)
| TokUsedHandle Position -- <_> (used handle)
| TokBuffer Position -- (buffer)
| TokEmptyBuffer Position -- <eb> (empty buffer)
| TokParall Position -- |
| Error Position

deriving (Eq,Show)

type Position = (Int, Int) -- (line, column)

Figure 4.3: Token data structure

The function lexer is the top-level function in this module. Using Haskell pattern
matching it convert the source program into the list of tokens and their positions.

lexer :: String -> [Token]

The subfunction lexer1 starts with the position (line = 1, column = 1) and recog-

43

4 An Interpreter for the Calculus λ(fchb)

nizes string-literal tokens and punctuator tokens in the input string.

lexer string = lexer1 1 1 string

The whitespace characters, such as blanks, tabs, newlines will be skipped during
lexical analysis:

lexer1 l c []=[]
lexer1 l c (’\n’:xs)= lexer1 (l+1) 0 xs
lexer1 l c (’\t’:xs)= lexer1 l (c+1) xs
lexer1 l c (’\r’:xs)= lexer1 (l+1) 0 xs

The other characters will be divided into tokens:

lexer1 l c (’[’:(’]’:xs)) = TokNil (l,c):lexer1 l(c+2) xs
lexer1 l c (’:’:xs) = TokCons (l,c):lexer1 l(c+1) xs
lexer1 l c (’,’:xs) = TokComma (l,c):lexer1 l(c+1) xs
lexer1 l c (’{’:xs) = TokCBOpen (l,c):lexer1 l(c+1) xs
lexer1 l c (’}’:xs) = TokCBClose (l,c):lexer1 l(c+1) xs
lexer1 l c (’-’:(’>’:xs)) = TokArrow (l,c):lexer1 l(c+2) xs
lexer1 l c (’<’:(’=’:xs)) = TokThread (l,c):lexer1 l(c+2) xs
lexer1 l c (’<’:(’s’:(’=’:xs))) = TokSusThread (l,c):lexer1 l(c+3) xs
lexer1 l c (’<’:(’n’:(’>’:xs))) = TokNew (l,c):lexer1 l(c+3) xs
lexer1 l c (’<’:(’c’:(’>’:xs))) = TokCell (l,c):lexer1 l(c+3) xs ...

The subfunctions lexVar and lexNum are acting for recognizing of keywords, alphanu-
meric identifiers and integer constants:

lexer1 l c (x:xs)
| isSpace x = lexer1 l(c+1) xs
| isAlpha x = lexVar l c (x:xs)
| isDigit x = lexNum l c (x:xs)
| otherwise = error(err_print (Error (l,c))++ show x)

lexNum l c xs = TokInt (l,c)(read num):lexer1 l(c+ length (num)) rest
where (num,rest) = span isDigit xs

lexVar l c xs =
case span isAlphaDigit xs of

("False",rest) -> TokFalse (l,c):lexer1 l(c+5) rest
("True",rest) -> TokTrue (l,c):lexer1 l(c+4) rest
("cell",rest) -> TokCCell (l,c):lexer1 l(c+4) rest
("thread",rest) -> TokCThread (l,c):lexer1 l(c+6) rest
("lazy",rest) -> TokCLazy (l,c):lexer1 l(c+4) rest
("unit",rest) -> TokCUnit (l,c):lexer1 l(c+4) rest
("exch",rest) -> TokExch (l,c):lexer1 l(c+4) rest
("case",rest) -> TokCase (l,c):lexer1 l(c+4) rest

44

4.3 Implementation of Ifchb

...
where isAlphaDigit x = isAlpha x || isDigit x

The subfunction noComments deletes all comments beginning with --.

noComments []=[]
noComments (x:xs)= if (x==’\n’) then xs else noComments xs

The only error can occur if any character does not match the specification of the
tokens. In this case the function errorPrint returns a message with the unknown
character and its position in the token stream.

errorPrint x = "\n *** Error during lexing at the position " ++
show(getPos x) ++ "\n unknown character:"

The following examples show successfull and erroneous lexical analyses:

*Lexer> lexer "<n> x (<n> y ((x <= y x | y <= \\ z -> z)))"

[TokNew (1,1),TokVar (1,5) "x",TokBOpen (1,7),TokNew (1,9),
TokVar (1,13) "y", TokBOpen (1,15),TokBOpen (1,16),TokVar (1,17)
"x",TokThread (1,19),TokVar (1,22)"y",TokVar (1,24) "x",
TokParall (1,26),TokVar (1,28) "y",TokThread (1,30),TokLam
(1,33),TokVar (1,35) "z",TokArrow (1,37),TokVar (1,40) "z",
TokBClose (1,41),TokBClose (1,42),TokBClose (1,43)]

*Lexer> lexer "<n> x (<n> y ((x <=> y x | y <= \\ z -> z)))"

[TokNew (1,1),TokVar (1,5) "x",TokBOpen (1,7),TokNew (1,9),
TokVar (1,13) "y", TokBOpen (1,15),TokBOpen (1,16),TokVar (1,17)
"x",TokThread (1,19)*** Exception:
*** Error during lexing at the position (1,21)
unknown character:’>’

The module Lexer exports the function lexer for its further using by parsing.

4.3.3 Module Parser

In the module Parser we define the specification of our parser for its automatically
generation with Happy1, a parse generator system for Haskell. The generated parser
is a bottom-up (or shift-reduce) parser. It implements the syntax analysis of our
interpreter. The parser receives a sequence of tokens, generated by the lexer, as
input, runs through the sequence from left to right once only and recognizes in this
sequence the syntax structure described in the module Syntax. Output of our parser
is a syntax tree of type Proc

1haskell.org/happy

45

4 An Interpreter for the Calculus λ(fchb)

We describe now the module Parser, a Happy file for further parser generation. Our
Happy file consits of four parts.

Part 1. The first part is a Haskell declaration of a module. This declaration is
enclosed in curly braces as all occurrences of Haskell code in the module Parser.

{module Parser
(
parser,
parse
)

where
import Lexer
import Syntax
import Char
import Data.List
}

Part 2.In the second part we make some declarations.

%name declares a name of the generating parser function:

%name parse

%tokentype is a type of tokens, which the parser becomes from the lexer:

%tokentype { Token }

%token declares all the possible tokens. The symbols on the left are the terminals of
our context-free grammar, and the symbols on the the right are the tokens, produced
by the lexer in the Haskell code. The $$ symbol is a placeholder and represents a
value of a token. The parser receives a stream of tokens and matches each of them
with the terminals on the left side:

%token
int {TokInt _ $$}
var {TokVar _ $$}
’False’ {TokFalse _}
’True’ {TokTrue _}
’[]’ {TokNil _}
’:’ {TokCons _}
’case’ {TokCase _}
’of’ {TokOf _}
’cell’ {TokCCell _}
’thread’ {TokCThread _}
’handle’ {TokCHandle _}
’lazy’ {TokCLazy _}
’unit’ {TokCUnit _}
’buffer’ {TokCBuffer _}

46

4.3 Implementation of Ifchb

’get’ {TokCGet _}
’exch’ {TokExch _}
’put’ {TokPut _ }
’<=’ {TokThread _}
’<s=’ {TokSusThread _}
’<n>’ {TokNew _}
’<c>’ {TokCell _}
’<h>’ {TokHandle _}
’’ {TokBuffer _}
’<eb>’ {TokEmptyBuffer _}
’<_>’ {TokUsedHandle _}
’|’ {TokParall _}
’,’ {TokComma _}
’{’ {TokCBOpen _}
’}’ {TokCBClose _}
’(’ {TokBOpen _}
’)’ {TokBClose _}
’->’ {TokArrow _}
’\\’ {TokLam _}
’=’ {TokEq _}
’’ {Error _}

Our context-free grammar is ambiguous, hence we specify precedences of the opera-
tors to avoid shift/reduce conflicts during parsing.

The %left, %right or %nonassoc declares tokens to be left, right or non-associative
respectively:

%right ’->’
%right ’:’
%left ’|’
%nonassoc ’,’

For example, the processes p1| p2 | p3 are to be parsed as (p1| p2) | p3, as | is left-
associative.

Part 3. In the next part we define all the production rules of our context-free
grammar:

%%
Proc :: {Proc}
Proc : Comp ’|’ Proc {Parall $1 $3}

| Comp {$1}
| ’(’Proc’)’ {$2}

Comp : ’<n>’ var ’(’Proc’)’ {New (mkV $2) $4}
| var ’<c>’ Exp {Cell (mkV $1) (chkVal $2 $3)}

47

4 An Interpreter for the Calculus λ(fchb)

| var ’<=’ Exp {Thread (mkV $1) $3}
| var ’<h>’ var {Handle (mkV $1) (mkV $3)}
| var ’<_>’ {Usedhandle (mkV $1)}
| var ’<s=’ Exp {Lazythread (mkV $1) $3}
| var ’’ Exp {Buffer (mkV $1) (chkVal $2 $3)}
| var ’<eb>’ {Emptybuffer (mkV $1)}

Exp : Exp AExp {App $1 $2}
| AExp {$1}

AExp: var {V (mkV $1)}
| int {mkInt $1}
| ’\\’ var ’->’ AExp {Lambda (mkV $2) $4}
| ’exch’ ’(’AExp’,’AExp’)’ {Exch $3 $5}
| ’put’ ’(’AExp’,’AExp’)’ {Put $3 $5}
| ’case’ AExp ’of’ ’{’Alts’}’ {Case $2 (chkAlts $5)}
| ’(’AExp’,’AExp’)’ {pair $2 $4}
| ’(’AExp’,’AExp’,’AExp’)’ {tupel3 $2 $4 $6}
| ’(’AExp’,’AExp’,’AExp’,’AExp’)’ {tupel4 $2 $4 $6 $8}
| ’(’ AExp ’:’ AExp ’)’ {cons $2 $4}
| ’False’ {false}
| ’True’ {true}
| ’[]’ {nil}
| Constant {$1}
| ’(’Exp’)’ {$2}

Constant : ’cell’ {CCell}
| ’thread’ {CThread}
| ’handle’ {CHandle}
| ’lazy’ {CLazy}
| ’unit’ {CUnit}
| ’buffer’ {CBuffer}
| ’get’ {CGet}

Alts : Alt {[$1]}
| Alt’,’Alts {$1:$3}

Alt : Pat’->’Exp {$1 $3}

Pat : ’True’ {altTrue}
| ’False’ {altFalse}
| ’(’Pat’)’ {$2}
| var’:’var {chkAltCons (mkV $1)(mkV $3)}
| ’[]’ {altNil}

48

4.3 Implementation of Ifchb

| ’(’var’,’var’)’ {chkAltPair (mkV $2)(mkV $4)}
| ’(’var’,’var’,’var’)’ {chkAlt3Tup (mkV $2)(mkV $4)(mkV $6)}
|’(’var’,’var’,’var’,’var’)’ {chkAlt4Tup (mkV $2)(mkV $4)(mkV $6)(mkV $8)}

Each production consists of a non-terminal symbol, followed by a colon and one or
more expansions, separated by |, on the left and a relevant Haskell code on the right.

This Haskell code can also include actions (e.g. functions mkVar, checkVal, pair,
etc.) for the syntax check of expressions. We describe these actions in the last part
of the Happy file.

For example, AExp: ’\\’ var ’->’ AExp {Lambda (mkV $2) $4} means, that
by the derivation of the production rule AExp: ’\\’ var ’->’ AExp the following
Haskell code is to be created:

Lambda (mkV $2) $4
Lambda result of the action mkV the forth component (AExp)

with the second component
(terminal var)

Part 4. The forth and the last part of the Happy file is a Haskell code with definitions
of functions and actions.

Firstly, we define here the function happyError. This function reports parse errors
and shows erroneous stream of tokens.

{
happyError :: [Token] -> a
happyError xs = error $ "parse error!" ++ show xs

Further we specify the actions we need for syntax proof and for creating parser output
of type Proc. Figure 4.4 shows all actions and their meanings.

Action Meaning
mkV identity function for variables
mkInt converts integers into binary code, using one and zero constructors
chkVal tests wether an expression is a value
chkAlts proves wether case-alternatives are valid and exhaustive
chkAltPair proves wether all variables in the pair patterns are varied
chkAltCons proves wether all variables in the list patterns are varied
chkAlt3Tupel proves wether all variables in the 3-tupel patterns are varied
chkAlt4Tupel proves wether all variables in the 4-tupel patterns are varied

Figure 4.4: Actions of the module Parse

Figures 4.4 and 4.5 show the decoding of all constructors and case-alternatives ac-
cordingly to the module Syntax:

49

4 An Interpreter for the Calculus λ(fchb)

Constr Int Int Int [Exp] or Alt Int Int Int [Var] Exp

As we already described, the first integer Int implies the type of a constructor or
alternative. They may be of the type List (1), Bool (2), Pair (3), 3-tupel (4),
4-tupel (5) or special type for binary code (6). The second integer we need to
distinguish between the constructors and alternatives of the same type. The third
integer implies the arity to tell how many arguments are allowed.

For example, the constructor [] (Nil) will be decoded as Constr 1 1 0 [], that
means the constructor is of type List, has number 1 and arity 0 (= the list of
arguments is empty []).

Using these three intergers it is very simple to make the type check in the case-
expressions.

nil = Constr 1 1 0 []
cons a b = Constr 1 2 2 [a,b]
true = Constr 2 1 0 []
false = Constr 2 2 0 []
pair a b = Constr 3 1 2 [a,b]
tupel3 a b c = Constr 4 1 3 [a,b,c]
tupel4 a b c d = Constr 5 1 4 [a,b,c,d]
zero = Constr 6 1 0 []
one = Constr 6 2 0 []
npair a b = Constr 6 3 2 [a,b]

Figure 4.5: Decoding of constructors

altNil = Alt 1 1 0 []
altCons a b = Alt 1 2 2 [a,b]
altTrue = Alt 2 1 0 []
altFalse = Alt 2 2 0 []
altPair a b = Alt 3 1 2 [a,b]
alt3tupel a b c = Alt 4 1 3 [a,b,c]
alt4tupel a b c d = Alt 5 1 4 [a,b,c,d]
altZero = Alt 6 1 0 []
altOne = Alt 6 2 0 []
altNpair a b = Alt 6 3 2 [a,b]

Figure 4.6: Decoding of case-alternatives

Now we define the top-level function for our module. The function parser becomes
a string as input, calls our parser parse and the lexer function lexer and returns a
syntax tree of type Proc.

parser :: String -> Proc
parse :: [Token] -> Proc
parser = (parse . lexer)

50

4.3 Implementation of Ifchb

}

We save the Happy file as Parser.y and generate our parser file Parser.hs.

The following examples show successful and unsuccessful parsing.

*Parser> parser "<n> x (<n> y ((x <= y x | y <= \\ w -> w)))"

New "x" (New "y" (Parall (Thread "x" (App (V "y") (V "x")))
(Thread "y" (Lambda "w" (V "w")))))

*Parser> parser "<n> x (<n> y ((x <= y True | y <= \\ z ->)))"

*** Exception: parse error![TokBClose (1,42),TokBClose (1,43),
TokBClose (1,44)]

And as syntax tree: New

��
���

HH
HHH

"x"
New

�
���

��

H
HHH

HH

"y"
Parall

���
���

HHH
HHH

Thread
���

HHH

"x"
App

�� HH

V"y" V"x"

Thread

��
��

HH
HH

"y"
App

���
HHH

V"y"
Lambda
�� HH

"w" V"w"

4.3.4 Module SemAnalysis

The parsing has brought our program into a syntactically valid form and now we have
to check whether this form have a sence. So, we move forward to semantic analysis.

Semantic analysis is the last part of the code analysis and the last chance for our
software to weed incorrect programs out. A program called to be semantically valid,
if all variables, functions, classes, etc. are exactly defined; expressions and variables
are used in accordance with the type system and so on.

In the module SemAnalysis we realize the following semantic checks:

• we prove wether the program is well-formed

51

4 An Interpreter for the Calculus λ(fchb)

• we check the new name operator (ν) - bindings

• we check the λ - bindings

• and make α - renaming for bounded variables.

As the IfFCHB is untyped, we do not need the type checking in this code analysis
phase.

We start now with the function isWellformed, our well-formedness checker. Our
program is well-formed, if there are no variables that are introduced in more than
one process (see Chapter 3). For example, a program x b v | x c v is not well-formed,
as the variable x occurs twice in the subprocesses.

The function isWellformed assembles all the variables from the processes into the
list (varList) and checks using the function nub wether the variables occur in the list
more than once. The output of the function isWellformed is True, if the program
is well-formed, or an error message with the list of repeated variables:

isWellformed :: Proc -> Bool
isWellformed s = if (varList s == nub (varList s)) then True

else error ("is not wellformed " ++ show (varList s))

varList x = case x of
(Parall a b) -> (varList a) ++ (varList b);
(Handle a b) -> [a] ++ [b];
(Cell a b) -> [a];
(Thread a b) -> [a];
(Usedhandle a) -> [a];
(Lazythread a b) -> [a];
(Buffer a b) -> [a];
(Emptybuffer a) -> [a]
(New a b) -> if is_wellformed b then []

else error ("is not wellformed " ++ show (varList b))

The function renameBoundedProc checks the ν - bindings in processes. All variables
in the processs have to be bounded with the new name operator ν. The function
renameNew searches in the processes for variables and renames the bounded variables
using the list of free variables freshVariables:

freshVariables = ["newVar" ++show x|x<-[1..500]]

renameBoundedProc :: Proc -> Proc
renameBoundedProc x = fst (renameNew x fv1 [])

renameNew :: Proc -> [Var] -> [(Var,Var)] ->(Proc, [Var])
renameNew (Usedhandle a) y z = (Usedhandle (renameVar2 a z), y)
renameNew (Handle a b) y z = (Handle (renameVar2 a z) (renameVar2 b z), y)

52

4.3 Implementation of Ifchb

renameNew (Buffer a b) y z = (Buffer (renameVar2 a z) (renameBoundedExp b z), y)
renameNew (Thread a b) y z = (Thread (renameVar2 a z) (renameBoundedExp b z), y)...

The function renameBoundedExp is called for the semantic analysis in expressions.
Analogically to renameBoundedProc, it checks the λ - bindings in expressions and
makes α - renaming using the function renameLam and the list of free variables
freshVariables:

renameBoundedExp :: Exp -> [(Var, Var)] -> Exp
renameBoundedExp x mappings = fst(renameLam x fv mappings)

renameLam :: Exp -> [Var] -> [(Var,Var)] ->(Exp, [Var])
renameLam (V x) y z = (V (renameVar x z), y)
renameLam (CCell) y z = (CCell, y)
renameLam (CThread) y z = (CThread, y)...

The following examples explain our semantic analysis:

*SemAnalysis> isWellformed parser "<n>x(<n>y(x<=y|y<=buffer))"
True

*SemAnalysis> isWellformed parser "<n>x(<n>y(y<=y|y<=buffer))"
*** Exception: is not well-formed ["y","y"]

*SemAnalysis> renameBoundedProc parser "<n>x(<n>y(x<=y|y<=\\w->w))"
New "_newVar1" (New "_newVar2" (Parall (Thread "_newVar1" (V "_newVar2"))
(Thread "_newVar2" (Lambda "_internal1" (V "_internal1")))))

*SemAnalysis> renameBoundedProc parser "<n>x(<n>w(<n>y(x<=y|s<=\\s->s)))"
New "_newVar1" (New "_newVar2" (New "_newVar3" (Parall (Thread "_newVar1"
(V "_newVar3")) (Thread "*** Exception: Variable s is not bound

4.3.5 Module EncodingBtoH

In the module EncodingBtoH we implement the translation TB : λ (fcb) → λ(fch)
introduced in Section 3.5. and semantic analysis of the calculus λ(fch).

We encode the buffers and empty buffers components as follows:

Buffer a b = <n>xp (<n>xg (<n>xs (<n>xh (a <= (xp,xg,xs,xh)
| <n>h(<n>f (h <h> f | xp <c> f | xg <c> True
| xs <c> b | xh <c> h))))))

Emptybuffer a = <n>xp (<n>xg (<n>xs (<n>xh (a <= (xp,xg,xs,xh)
| <n>h(<n>f(<n>hs(<n>fs (h <h> f | hs <h> fs
| xp <c> True | xg <c> f | xs <c> fs | xh <c> h)))))

53

4 An Interpreter for the Calculus λ(fchb)

We let the encoded components to be parsed and pass them to the function renameNewBufferToHandle
as arguments for semantic analysis. The function renameNewBufferToHandle has the
same functionality as the function renameNew in the module SemAnalysis:

renameNewBufferToHandle :: Proc -> [Var] -> [(Var,Var)] ->(Proc, [Var])

By encoding of the buffer operations we use syntactic sugar given in Figure 3.9. The
encoded expressions will be recurvie called with the function renameBoundedExp for
semantic analysis. The encoded buffer operations could be found in Appendix.

4.3.6 Module EncodingHtoB

The module EncodingHtoB is the implementation of the translation TH : λ (fch)
→ λ(fcb) introduced in Section 3.5. and semantic analysis of the calculus λ(fcb).

We encode the handle and used handle components as follows:

Usesedhandle a = a <s= a

Handle a b = <n>y1 (b <s= (\\y2->((\\y3 -> put(y1,y2))y2))(get y1)
|y1 <eb> |a <= \\y4 -> put(y1,y4))

We parse the encoded components and pass them to the function renameNewHandlesToBuffer
as arguments for semantic analysis. The function renameNewHandlesToBuffer has
the same functionality as renameNewBufferToHandle and renameNew:

renameNewHandleToBuffer :: Proc -> [Var] -> [(Var,Var)] ->(Proc, [Var])

We encode the constant handle (see Appendix) analogical to the buffer operation and
perform semantic analysis with the function renameBoundedExp as well.

4.3.7 Module Transformation

The module Transformation contains two transformations of the data structure:

Transformation 1. Considering the structural congruence of processes we transform
our syntax tree into a new, easily manageable data structure. The new data structure
has a form Proc’ [list of new variables] [list of processes]. The use of
the lists provides a faster search in processes, that makes the furter implementation
of evaluation rules easier. Figure 4.7 shows the new data structure for processes, the
data structure for expressions remains unchanged.

54

4.3 Implementation of Ifchb

data Proc’ = Proc’[Var] [Comp]

data Comp = Cell’ Var Exp
| Thread’ Var Exp
| Handle’ Var Var
| Usedhandle’ Var
| Lazythread’ Var Exp
| Buffer’ Var Exp
| Emptybuffer’ Var

Figure 4.7: New data structure Proc’

The function transfToProc’ carries out the transformation of the λ(fchb) processes
after their well-formedness and semantic check (see Module SemAnalysis) into the
data structure Proc’.

transfToProc’ :: Proc -> Proc’
transfToProc’ x = if is_wellformed x == True

then transf [] (renameBoundedProc x)
else error "not wellformed"

The subfunctions transf and addParall assemble new variables and the processes
directly and bring them into the form Proc’[Var][Comp], whereas non-terminals New
and Parall are to be eliminated.

transf v x = case x of
(Cell a b) -> Proc’ v [Cell’ a b];
(Thread a b) -> Proc’ v [Thread’ a b];
(Handle a b) -> Proc’ v [Handle’ a b];
(New a b) -> let new_v = v ++ [a] in transf new_v b;
(Parall a b) -> let Proc’ nuvars procs =

addParall (transf [] a) (transf [] b)
in Proc’ (v++nuvars) procs ...

addParall (Proc’ a b) (Proc’ c d) = Proc’ (a++c) (b++d)

In the next example you can see the difference between both data structures for the
source code <n> x (<n> y (x <= y | <n> d (<n> s (<n> m (s <= True))))):

• as Proc data structure:

New "_newVar1" (New "_newVar2" (Parall (Thread "_newVar1" (V "_newVar2"))
(New "_newVar3" (New "_newVar4" (New "_newVar5" (Thread "_newVar4"
(Constr 2 1 0 [])))))))

• and definitely less complex as new Proc’ data structure:

Proc’ ["_newVar1","_newVar2","_newVar3","_newVar4","_newVar5"]
[Thread’ "_newVar1" (V "_newVar2"),Thread’ "_newVar4" (Constr 2 1 0 [])]

55

4 An Interpreter for the Calculus λ(fchb)

For transformations in the calculi λ(fch) and λ(fcb) we use the functions transfToProcBtoH’
and transfToProcHtoB’ respectevely. They have the same functionality with transfToProc’:

After the transformation into Proc’ our program is ready for execution.

Transformation 2. We define also the function procPrimeToProc, which provide
the program tranformation from Proc’ back to Proc. This transformation we will
use later for software testing (see Chapter 5):

procPrimeToProc :: Proc’ -> Proc
procPrimeToProc (Proc’ vars comps) =

foldr New (foldr1 Parall (map compToProc comps)) vars

compToProc :: Comp -> Proc
compToProc c = case c of

(Cell’ v e) -> Cell v e
(Thread’ v e) -> Thread v e
(Handle’ v1 v2) -> Handle v1 v2
(Usedhandle’ v) -> (Usedhandle v)
(Lazythread’ v e) -> (Lazythread v e)
(Buffer’ v e) -> (Buffer v e)
(Emptybuffer’ v) -> (Emptybuffer v)

4.3.8 Module ReductionRules

The module ReductionRules together with the module Evaluation is the opera-
tional semantics of the calculus λ(fchb). We implement in this module reduction
rules introduced in Chapter 3 (Figure 3.4).

We start with the evaluation of threads in a process (see evaluation contexts in
Figure 3.3). The function eval1 performes one-step reduction of the first componet
of a process, if this component is an eager thread, otherwise returns Nothing. Four
arguments of the function are the first component of a process, a list of new operators,
a list of the rest componets of a process and a list of fresh variables.

The evaluation of a thread is only possible if its value is a non-variable expression:

eval1 :: Comp -> [Var] -> [Comp] -> [Var] -> Maybe (Proc’, [Var])
eval1 p ns ps frv =

case p of
(Thread’ x (V y)) -> Nothing
(Thread’ x e) ->
let s = eval2 e ns ps frv

in case s of
Just (e’, ns’, ps’, frv’) ->
Just (Proc’ ns’ ((Thread’ x e’):ps’), frv’);
Nothing -> Nothing

56

4.3 Implementation of Ifchb

otherwise -> Nothing

The function eval2 is called by eval1 to provide the execution within a thread. The
function eval2 provides a pattern matching of all possible expressions by reduction
rules, and evaluate them if a suitable pattern is found. eval2 requires four arguments
as well:

eval2 :: Exp -> [Var] -> [Comp] -> [Var] -> Maybe (Exp, [Var], [Comp], [Var]),

The arguments are: an expresion, a list of new operators, a list of the rest components
and a list of fresh variables. eval2 returns an evaluated expression or Noithing and
a list of unused fresh variables.

For example, the pattern matching fot the rule (beta-CBV(ev) is defined as

eval2 (App (Lambda x e1) e2) ns ps frv
| isValue e2 = case (betaRed e2 x e1 frv) of
(e’,frv’) -> Just (e’,ns,ps,frv’)

| otherwise = case eval2 e2 ns ps frv of
Just (e’,ns,ps,frv’) -> Just (App (Lambda x e1) e’,ns,ps,frv’)
Nothing -> Nothing

The evaluation of (beta-CBV(ev))-rule invokes the function betaRed to perform a
standard β-redution, we described in Chapter 2:

betaRed :: Exp -> Var -> Exp -> [Var] -> (Exp, [Var])
betaRed t v (V x) y

| x == v = let (t’,zs) = renameVal t y [] in (t’, zs)
| otherwise = ((V x), y)

As example we consider the evaluation of a thread with the function eval1:

(x ⇐ (λz.z) True)

*Evaluation>
eval1 (Thread’ "x" (App (Lambda "z" (V "z")) (Constr 2 1 0 [])))[][]frv
Just (x <= True,["frVar1","frVar2","frVar3",...

The implementation of reduction rules for creationg of new components are similar.
We consider the pattern matching for the rule (THREAD.NEW(ev)) that spawns a
new eager thread:

eval2 (App CThread e2) ns ps (z:frv)
| isValue e2 = Just ((V z), z:ns, ((Thread’ z (App e2 (V z))):ps), frv)
| otherwise = case eval2 e2 ns ps (z:frv) of

Just (e’,ns,ps,frv’) -> Just (App CThread e’,ns,ps,frv’)
Nothing -> Nothing

And an example of new thread creation:

(x ⇐ (thread ((λz.z) False))))

57

4 An Interpreter for the Calculus λ(fchb)

*Evaluation> eval1 (Thread’ "x" (App CThread (App
(Lambda "w" (V "w")) (Constr 2 2 0 []))))[][]frv

Just (x <= (thread False),["frVar1","frVar2"..

For implementig such reduction rules as (FUT.DEREF(ev)), (LAZY.TRIGGER(ev)),
(HANDLE.BIND(ev)), (CELL.EXCH(ev)), (BUFF.PUT(ev)) and (BUFF.GET(ev))
we define a search function, which searches in components of a process for component
identifiers and returns their value:

searchInProcs :: Var -> [Comp] -> Exp -> Maybe (Comp, Exp, [Comp])
searchInProcs a x e = siP a x x e
searchInProcs a (x:xs) e2 = case x of

Thread’ b e3 -> if (a==b) then
if (isValue e3) then Just ((Thread’ b e3), e3, (x:xs))

else Nothing
else let p = xs ++ [x] in (searchInProcs a p e2);

Lazythread’ b e3 -> if a==b then
Just ((Lazythread’ b e3), e3, ((Thread’ a e3):xs))

else let p = xs ++ [x] in (searchInProcs a p e2);
Handle’ b y -> if a==b then ...

For example, we examine the pattern matching for an application (App (V x) e2).
There are some reduction rules matches this expression. The result of evaluation here
depends on the result of the function searchInProcs: if the identifier is used in an
eager thread, the reduction rule (FUT.DEREF(ev)) will be evaluated, if the identifier
is used in a lazy thread, then the rule (LAZY.TRIGGER(ev)) and so on:

eval2 (App (V x) e2) ns ps (z:frv)
| isValue e2 = let s = searchInProcs x ps e2

in case s of
Just ((Thread’ a b), e’,ps’) -> let (e’’,zs’) = renameVal e’ (z:frv) []

in Just ((App e’’ e2), ns, ps’, zs’);
Just ((Lazythread’ a b), e’,ps’) -> Just (App (V x) e2,ns,ps’,z:frv);
Just ((Handle’ a b), e’,ps’) -> Just (e’,ns,ps’,(z:frv));

Nothing -> Nothing
| otherwise = case eval2 e2 ns ps frv of

Just (e’,ns,ps,frv’) -> Just (App (V x) e’,ns,ps,frv’);
Nothing -> Nothing

So, for example if searchInProcs find a an eager thread, then (FUT.DEREF(ev))
rule will be evaluated, if lazy thread then (LAZY.TRIGGER(ev)).

4.3.9 Module Evaluation

In the module Evaluation we implement fuctions that provide i-step reduction of a
process and check wether a process is sucessful and convergent.

58

4.3 Implementation of Ifchb

First we define the function eval1Step, which perform a one-step reduction of a
process, i.e. the reduction of the first component:

eval1Step :: Proc’ -> Maybe (Proc’, [Var])
eval1Step (Proc’ ns (p:ps)) = eval1 p ns ps frv

To enable a one-step reduction for all components, we implement the function all1StepSuccessors.
This function is based on the Round-robin scheduling and evaluates each eager thread:

all1StepSuccessors :: Proc’ -> [Maybe (Proc’, [Var])]
all1StepSuccessors (Proc’ ns ps)

= map eval1Step (map (Proc’ ns) (everyThreadFirst [] ps))
where

everyThreadFirst _ [] = []
everyThreadFirst qs (p:ps) = ((p:ps) ++ qs) : everyThreadFirst (qs++[p]) ps

But only one-step reduction is not enough for the evaluation, and we define the func-
tion allEndPoints, which returns all end-points of irreducible reduction successors:

allEndPoints :: Proc’ -> [Proc’]
allEndPoints p = nub $ map fst $ allEP_it [(p,frv)]

allEP_it :: [(Proc’, [Var])] -> [(Proc’, [Var])]
allEP_it [] = []
allEP_it p =
let xs = filter (\(p’,v) -> isIrreducible p’) p

ys = concatMap (map fromJust . filter isJust . all1StepSuccessorsWV)
(filter (\(p’,v) -> not $ isIrreducible p’) p) in xs ++ (allEP_it ys)

For example, allEndPoints of the process

y b True | p1 ⇐ get y | p2 ⇐ (λw. put(y, w)) (get y))

are two sequences :

newVar1 <= True
| newVar3 <eb> -
| newVar2 <= ((\newVar4 -> put (newVar3,newVar4)) (get newVar3)

and

newVar1 <= True
| newVar3 <eb> -
| newVar2 <= unit

where the second one is successful.

As we described in Chapter 3, a successful process is a well-formed process and in
each thread of this process the identifier is bound to a non-variable value, a cell, a

59

4 An Interpreter for the Calculus λ(fchb)

lazy future, a handle or a buffer. For example, the process x ⇐ y | y ⇐ z |z b −
is successful, and the processes x ⇐ x (a black hole) and x ⇐ (λu, v.v)(y unit) |
|y ⇐ (λu, v.v)(x unit) are prohibited.

As we have already checked the well-formedness in the module SemAnylysis, so we
need now only to check wether the identifiers are bound.

The function isSuccessfull perfomes the successfulness test. It runs through the
process and checks wether all identifiers in the threads (componentSuccessfull) are
bound (boundToSP) to a non-variable value, a cell, a lazy thread, a handle, or a
buffer (findSuccessor) and returns True, when all the subprocesses are successful.
We check here only threads, because the other subprocesses - reference cells, buffers,
handles and and lazy threads - are always successful.

isSuccessfull :: Proc’ -> Bool
isSuccessfull (Proc’ ns ps) =

all (==True)(map(\p-> componentSuccessfull p ps) ps)

componentSuccessfull (Thread’ v (V x)) ps = boundToSP x [x] ps
componentSuccessfull (Thread’ v e) ps = isValue e
componentSuccessfull _ ps = True

boundToSP x visitedvars ps =
let successor = findSuccessor x ps
in case successor of
(Thread’ v (V y)) -> if y ‘elem‘ visitedvars then False

else boundToSP y (x:y:visitedvars) ps
(Thread’ v e) -> isValue e
other -> True

findSuccessor x (p:ps) =
let v = case p of

(Thread’ y e) -> [y]
(Cell’ y e) -> [y]
(Handle’ y1 y2) -> [y1,y2]
(Usedhandle’ y) -> [y]
(Buffer’ y e) -> [y]
(Emptybuffer’ y) -> [y]
(Lazythread’ y e) -> [y]

in if x ‘elem‘ v then p else findSuccessor x ps

Now we define two important functions to examine convergence of processes. The
function mayConvergent checks wether a process is may-convergent (see Section 3.5):

mayConvergent :: Proc’ -> Bool
mayConvergent p =

any (== True) [any (isSuccessful) (alliStepSucc i p) | i <- [1..]]

60

4.3 Implementation of Ifchb

The function totalMustConvergent checks wether a process is total must-convergent
(see Section 3.5 as well).

totalMustConvergent :: Proc’ -> Bool
totalMustConvergent p = all isSuccessful (allEndPoints p)

Examples of evaluation of these functions we give in Chapter 5.

4.3.10 Module Interpreter

The module Interpreter contains three functions, or three interpreters for the cal-
culi λ(fcb), λ(fch), and λ(fchb):

interpretFCHB :: String -> [T.Proc’]
interpretFCHB str = allEndPoints $ T.transfToProc’ $ parser $ str

interpretFCH :: String -> [T.Proc’]
interpretFCH str = allEndPoints $ T.transfToProcBtoH’ $ parser $ str

interpretFCB :: String -> [T.Proc’]
interpretFCB str = allEndPoints $ T.transfToProcHtoB’ $ parser $ str

Each function provides an execution of a program in the required calculus. These
function we use later in Chapter 5 to compare results of encoded and non-encoded
programs.

4.3.11 Module Decoding

Finally, the module Decoding provide our software with functions show1 and decodeInt
to decode expressions of a program into the original source code. The function show1
converts expressions into a string and the function decodeInt converts integers into
the decimal code:

*Decoding> show1 (Constr 6 3 2 [Constr 2 1 0 [],Constr 1 2 2
[Constr 6 2 0 [],Constr 1 2 2 [Constr 6 1 0 [],
Constr 1 2 2 [Constr 6 1 0 [],Constr 1 2 2
[Constr 6 2 0 [],Constr 1 2 2 [Constr 6 2 0 [],
Constr 1 1 0 []]]]]]])

"25"

We are now finished with the implementation and report about software test results
in the next Chapter.

61

4 An Interpreter for the Calculus λ(fchb)

62

5 Testing

Although the translations TB : λ (fcb) → λ(fch) and TH : λ (fch) → λ(fcb) have
been shown adequate in [SSNSS08], in this chapter we validate these results by some
tests. In particular for some examplary processes we evaluate the process as well as
the encoded process. For non-encoded process we encode the result of the evaluation.
Finally, we compare both results.

We compare results of the λ(fchb) interpreter (Ifchb), the λ(fch) interpreter (Ifch)
and the λ(fcb) interpreter (Ifcb). 1

Test 1

We examine the translation TB : λ (fcb) → λ(fch). Consider the process p1:

p1 = (νx) (νy) (y ⇐ λw.put(x, False) (get x) | x b True)

Ifchb produces a non-empty buffer with the value False:

(1)

*Iterpreter> interpretFCHB p1
newVar2 <= unit
| newVar1 False

Ifch produces a non-empty buffer with the value False as well. The buffer is rep-
resented as a 4-tupel (newVar36,newVar37,newVar38,newVar39), where newVar36,
newVar37, newVar38 and newVar39 are the names of reference cells.

If we fill the 4-tupel with contents of reference cells using handle bindings, we get
(frVar5,True,False,frVar6), where frVar5 is a future, True means that the buffer
is not empty, False is an actual content of the buffer, and frVar is the name of a
handle that binds the future frVar5:

(2)

*Iterpreter> interpretFCH p1
newVar2 <= unit
| frVar1 <= True
| frVar2 <h> -
| frVar6 <h> frVar5

1For better performance we omit all new name operators in results.

63

5 Testing

| newVar1 <= (newVar36,newVar37,newVar38,newVar39)
| newVar41 <= True
| newVar36 <c> frVar5
| newVar37 <c> frVar1
| newVar38 <c> False
| newVar39 <c> frVar6
| frVar4 <h> frVar3

After removing some unused and successful components (i.e. garbage collecting some
components) and removing some indirections (i.e. copying value True of frVar1 into
the thread named newVar37) and adding a fresh renaming we get the (contextual)
equivalent process:

(2’)

newVar1 <= (newVar3,newVar4,newVar5,newVar6)
| newVar2 <= unit
| newVar3 <c> newVar8
| newVar4 <c> True
| newVar5 <c> False
| newVar6 <c> newVar7
| newVar7 <h> newVar8

The result (3) is exactly (up to the ordering of the components) the result (2’).

To compare our results more precisely we apply our encoding to the result (1) again
to encode the buffer newVar1 False:

(3)

*Iterpreter> map (T.transfToProcBtoH’. T.procPrimeToProc) (interpretFCHB p1)
newVar2 <= unit
| newVar1 <= (newVar3,newVar4,newVar5,newVar6)
| newVar7 <h> newVar8
| newVar3 <c> newVar8
| newVar4 <c> True
| newVar5 <c> False
| newVar6 <c> newVar7

Test result: We can see that the result (3) is exactly (up to the ordering of the
components) the result (2’), i.e. the translation TB : λ (fcb) → λ(fch) is equivalent.

Test 2

We consider another process p2 and the translation TB:

p2 = (νx)(νz)(x ⇐ z | z ⇐ buffer unit)

The evaluation of p2 with Ifchb returns a new empty buffer:

64

(4)

*Iterpreter> interpretFCHB p2
newVar2 <= frVar1
| frVar1 <eb> -
| newVar1 <= newVar2

The evaluation with Ifch returns a new buffer as 4-tupel as well (for more details
about invariants see the result (2) above):

(5)

*Iterpreter> interpretFCH p2
frVar9 <= (frVar5,frVar6,frVar7,frVar8)
| frVar8 <c> frVar2
| frVar7 <c> frVar3
| frVar6 <c> frVar1
| frVar5 <c> True
| frVar4 <h> frVar3
| frVar2 <h> frVar1
| newVar1 <= newVar2
| newVar2 <= frVar9

We apply Ifch interpreter to the result (4) to encode the empty buffer frVar1 <eb> - :

(6)

*Iterpreter> map (T.transfToProcBtoH’. T.procPrimeToProc) (interpretFCHB p2)
newVar3 <= newVar1
| newVar1 <= (newVar4,newVar5,newVar6,newVar7)
| newVar8 <h> newVar9
| newVar10 <h> newVar11
| newVar4 <c> True
| newVar5 <c> newVar9
| newVar6 <c> newVar11
| newVar7 <c> newVar8
| newVar2 <= newVar3

Test result: the results (5) and (6) are alpha-equivalent, i.e. the translation TB : λ
(fcb) → λ(fch) is equivalent.

Test 3

We examine now wether the translation TB is convergence equivalent. Consider again
the same processes p1 and p2 and the results of function calls mayConvergent and
totalMustConvergent:

*Evaluation> mayConvergent $ transfToProc’ $ parser $ p_1

65

5 Testing

True
*Evaluation> mayConvergent $ transfToProcBtoH’ $ parser $ p_1
True
Evaluation> totalMustConvergent $ transfToProc’ $ parser $ p_1
True
*Evaluation> totalMustConvergent $ transfToProcBtoH’ $ parser $ p_1
True

and

*Evaluation> mayConvergent $ transfToProc’ $ parser $ p_2
True
*Evaluation> mayConvergent $ transfToProcBtoH’ $ parser $ p_2
True
Evaluation> totalMustConvergent $ transfToProc’ $ parser $ p_2
True
*Evaluation> totalMustConvergent $ transfToProcBtoH’ $ parser $ p_2
True

Test result: both interpretrs return the same results, and we can suppose that the
translation TB : λ (fcb) → λ(fch) is convergence equivalent.

Test 4

Consider the process p3 and the translation and TH :

p3 = νx (νz (νv (νy(y b True | x ⇐ get y | z ⇐ (λw. put (y, w)) (get y)

The interpreter Ifchb returns two possible end-points of this process:

(7)

newVar1 <= True
| newVar3 <eb> -
| newVar2 <= ((\newVar4 -> put (newVar3,newVar4)) (get newVar3)))))

and

(8)

newVar1 <= True
| newVar3 <eb> -
| newVar2 <= unit

The result (7) is a result , when the component x ⇐ get y is evaluated first, and (7)
is not successful. The result (8) is successful, if the evaluation begins with the thread
z ⇐ (λw. put (y, w)) (get y), that provides evaluation of both threads.

The results of convergece tests are again the same by both interpreters: the process
p3 is may-convergent, but not total must-convergent:

66

*Iterpreter> mayConvergent $ T.transfToProc’ $ parser $ p_3
True
*Iterpreter> totalMustConvergent $ T.transfToProc’ $ parser $ p_3
False

Iterpreter> mayConvergent $ T.transfToProcBtoH’ $ parser $ p_3
True
*Iterpreter> totalMustConvergent $ T.transfToProcBtoH’ $ parser $ p_3
False

Test result: We can again suppose that the translation TB : λ (fcb) → λ(fch) is
convergence equivalent.

Test 5

We examine the translation TH : λ (fch) → λ(fcb). Consider the process p4:

p4 = (νx) (x ⇐ handle (λx.λy.((λw.(x True))(y (λq.q)))))

The evaluation of p4 with Ifchb binds the futures newVar1 and frVar1 to theier
values and returns a used handle after this binding.

(9)

*Iterpreter> interpretFCHB p_4
newVar1 <= unit
| frVar1 <= True
| frVar2
<h> -

The evaluation of p4 with Ifcb returns the non-empty buffer frVar5(\frVar9->frVar9),
which stays filled using the combination of put and get operations. This buffer sim-
ulates behavior of a handled future, it "binds"its value to its name. The lazy thread
here controls that this binding occurs once only:

(10)

*Iterpreter> interpretFCB p_4
nnewVar1 <= True
| frVar6 <= (\frVar10 -> frVar10)
| frVar5 (\frVar11 -> frVar11)
| frVar7 <= (\newVar15 -> put (frVar5,newVar15))

Test result: the results (9) and (10) we can conclude that they are equivalent.

67

5 Testing

Test 6

Now we examine wether the translation TB is convergence equivalent. We consider
again the processe p4 and the functions mayConvergent and totalMustConvergent:

*Evaluation> mayConvergent $ transfToProc’ $ parser $ p_4
True
*Evaluation> mayConvergent $ transfToProcBtoH’ $ parser $ p_4
True
Evaluation> totalMustConvergent $ transfToProc’ $ parser $ p_4
True
*Evaluation> totalMustConvergent $ transfToProcBtoH’ $ parser $ p_4
True

Test result: the translation TH : λ (fch) → λ(fcb) is convergence equivalent.

Test 7

Consider the process p5:

p5 = (νx) (νy) (νz) (νa) (x h y | z ⇐ x True |a ⇐ x False)

The interpreter Ifchb returns again two sequinces, as thera two pssibilities for handle
bindings z <= x True and a <= x False:

newVar3 <= unit
| newVar2 <= True
| newVar1 <h> -
| newVar4 <= (newVar1 False)

and

newVar4 <= unit
| newVar2 <= False
| newVar1 <h> - |

The interpreter Ifcb returns an error message, as a process tries to use a handle once
more.

Test result: The convergence test for the process p5 fails, it is not may-convergent,
as one handle is used twice in the process.

68

6 Conclusion and Further Work

In our master’s thesis we introduced two important programming approaches in the
modern programming: functional an concurrent programming. We gave an overview
about Haskell, a functional language and described how sequential languages could
become concurrent using concurrency primitives. We also gave an overview of the
pure and some extended λ-calculi in Chapter 2.

In Chapter 3 we introduced another extended calculus λ(fchb), a concurrent lambda-
calculus with handled futures, one-place buffers and reference cells and showed how
concurrent primitives be mutually encoded within the same language, we also provide
an approach of proving equivalence of concurrency primitives using translations of
calculi.

In Chapter 4 we implemented an untyped interpreter for the calculus λ(fchb) as a
technical validation for proving the equivalence of concurrent primitives and adequacy
of the translations. Our implemented interpreter is able to execute mutual encoding of
concurrent buffers and concurrent handles and examine adequacy of both translations
TB : λ (fcb) → λ(fch) and TH : λ (fch) → λ(fcb).

In Chapter 5 we performed some tests to compare the results of translations and
encodings. Using our implemented interpreter we tested wether encoded and non-
encoded programs return the same result. These results were succesful and could
be seen as partially confirmations of our theoretical arguments about equivalence of
concurrent primitives and adequacy of translations.

We presume that we performed only some tests and can not be yet completely assured
in the correctness of equivalence, but we have made the first steps. As further work
we would suggest further testing of processes with our software, and an extending of
our software with type checker and garbage collector.

69

6 Conclusion and Further Work

70

Appendix

Encoding of the buffer operations

bufferToHandle =

Lambda "new" (App (Lambda "new2" (Case (V "new2")[Alt 3 1 2 ["h","f"]
(App (Lambda "new1" (Case (V "new1")[Alt 3 1 2 ["hs","fs"](App
(Lambda "putg" (App (Lambda "getg" (App (Lambda "stored" (App (Lambda "handler"
(App CThread (Lambda "new" (Constr 5 1 4 [V "putg",V "getg",V "stored",
V "handler"]))))(App CCell (V "h"))))(App CCell (V "fs")))) (App CCell (V "f"))))
(App CCell (Constr 2 1 0 [])))])) (App CHandle (Lambda "fs" (Lambda "hs"
(Constr 3 1 2 [V "hs",V"fs"])))))]))(App CHandle (Lambda "f" (Lambda "h"
(Constr 3 1 2 [V "h",V "f"])))))

putToHandle x v =

App (Lambda "new4" (Case (V "new4") [Alt 3 1 2 ["x","v"] (Case (V "x")
[Alt 5 1 4 ["xp","xg","xs","xh"] (App (Lambda "new3" (Case (V "new3")
[Alt 3 1 2 ["h","f"] (App (Lambda "new2" (App (Exch (V "xh") (V "h"))
(Constr 2 1 0 []))) (App (Lambda "new1" (Exch (V "xs") (V "v"))) (Case
(Exch (V "xp")(V "f")) [Alt 2 1 0 [] (Constr 2 1 0 []),Alt 2 2 0 []
(Constr 2 1 0 [])])))]))(App CHandle (Lambda "f" (Lambda "h"
(Constr 3 1 2 [V "h",V "f"])))))])])) (Constr 3 1 2 [x, v])

getToHandle =

Lambda "new5" (Case (V "new5") [Alt 5 1 4 ["xp","xg","xs","xh"] (App
(Lambda "new4" (Case (V "new4") [Alt 3 1 2 ["h","f"] (App (Lambda "new3"
(Case (V "new3")[Alt 3 1 2 ["hs","fs"] (App (Lambda "new2" (App (Lambda "v"
(App (Lambda "new1" (V "v"))(App (Exch (V "xh") (V "h")) (Constr 2 1 0 []))))
(Exch (V "xs") (V "fs"))))(Case (Exch (V "xg") (V "f")) [Alt 2 1 0 []
(Constr 2 1 0 []),Alt 2 2 0 [](Constr 2 1 0 [])]))])) (App CHandle
(Lambda "fs" (Lambda "hs" (Constr 3 1 2 [V "hs",V "fs"])))))]))
(App CHandle (Lambda "f" (Lambda "h" (Constr 3 1 2 [V "h",V "f"])))))])

71

6 Conclusion and Further Work

Encoding of the constant buffer

handleToBuffer y1 y2 y3 y4 y5 y6 y7 y8 =

Lambda y1 (App (Lambda y2 (App (Lambda y3 (App (Lambda y4 (App
(App (V y1) (V y3)) (V y4))) (App CThread (Lambda y5 (Lambda y6
(Put (V y2) (V y6))))))) (App CLazy (Lambda y5 (App (Lambda y7
(App (Lambda y8 (V y7)) (Put (V y2) (V y7)))) (App CGet (V y2)))))))
(App CBuffer CUnit))

72

Bibliography

[Ali] Alice Project, Programming Systems Lab, Saarland University,
http://www.ps.uni-sb.de/alice/

[BA06] Ben-Ari, M.: Principles of Concurrent and Distributed Programming .
Addison-Wesley, 2006

[Bar84] Barendregt, H. P.: The Lambda Calculus: Its Syntax and Semantics .
North-Holland, 1984

[Bir98] Bird, R.: Introduction to Functional Programming using Haskell . Pren-
tice Hall, 1998

[BTL05] Bois, A. R. D.; Trinder, P. W.; Loidl, H.-W.: mHaskell: Mobile
Computation in a Purely Functional Language. In: J. UCS 11 (2005),
Nr. 7, S. 1234–1254

[GBJL00] Grune, D.; Bal, H. E.; Jacobs, C. J. H.; Langendoen, K. G.: Modern
Compiler Design. John Wiley & Sons, LTD, 2000

[Han02] Hansen, P. B.: The invention of concurrent programming. (2002), S.
3–61. ISBN 0–387–95401–5

[Han04] Hankin, C.: An Introduction to Lambda Calculi for Computer Scientists .
Bd. Volume 2. King’s College Publications, 2004

[HPF00] Hudak, P.; Peterson, J.; Fasel, J.: A Gentle Introduction to Haskell ,
2000

[JL92] Jones, S. L. P.; Lester, D.: Implementing Functional Languages . Pren-
tice Hall, 1992

[Jon03] Jones, S. P.: Haskell 98 Language and Libraries: The Revised Report .
Cambridge University Press, 2003

[Mic88] Michaelson, G.: An Introduction to Functional Programming through
Lambda Calculus . Addison-Wesley Publishing Company, 1988

[Mil99] Milner, R.: Communicating and Mobile Systems: The Pi Calculus .
Cambridge University Press, 1999

73

Bibliography

[NSS06] Niehren, J.; Schwinghammer, J.; Smolka, G.: A concurrent lambda
calculus with futures. In: Theor. Comput. Sci. 364 (2006), Nr. 3, S.
338–356. – ISSN 0304–3975

[OSG08] O’Sullivan, B.; Stewart, D. B.; Goerzen, J.: Real World Haskell .
O’Reilly, 2008

[Par01] Kap. 3 In: Parrow, J.: An introduction to the pi-calculus in Handbook
of Process Algebra. Elsevier, 2001, S. 479–543

[Pau96] Paulson, L. C.: ML for the Working Programmer . Cambridge University
Press, 1996

[Poh93] Pohlers, W.: Mathematische Grundlagen der Informatik . Oldenbourg,
1993

[Rep99] Reppy, J. H.: Concurrent Programming in ML. Cambridge University
Press, 1999

[RL99] Rabhi, F.; Lapalme, G.: Algorithms: a functional programming ap-
proach. Addison-Wesley, 1999

[Sab08] Sabel, D. Semantics of a call-by-need lambda calculus with McCarthy’s
amb for program equivalence. 2008

[Sch97] Schneider, F. B.: On Concurrent Programming . Springer, 1997

[SPJ96] SL Peyton Jones, S. F.: Concurrent Haskell. In: 23rd ACM Sympo-
sium on Principles of Programming Languages (1996), S. 295–308

[SS89] Søndergaard, H.; Sestoft, P.: Referential Transparency, Definiteness
and Unfoldability. In: Acta Inf. 27 (1989), Nr. 6, S. 505–517

[SS06] Schmidt-Schauß, M. Skript zur Vorlesung "Einführung in die Funk-
tionale Programmierung"(WS 2006/2007). 2006

[SS07] Schmidt-Schauß, M. Skript zur Vorlesung "Funktionale Program-
mierung: Programmtransformationen"(WS 2006/2007). 2007

[SS207] Funktionale Programmierung. Anleitung zum Praktikim.
http://www.ki.informatik.uni-frankfurt.de/lehre/SS2007/FPPR. SS
2007

[SSNSS08] Schwinghammer, J.; Sabel, D.; Niehren, J.; Schmidt-Schauß,
M.: On Proving the Equivalence of Concurrency Primitives / Research
group for Artificial Intelligence and Software Technology. Goethe Univer-
sität Frankfurt, Germany, 2008. – Frank-34

[SSS08] Schmidt-Schauß, M.; Sabel, D.: Closures of May and Must Con-
vergence for Contextual Equivalence / Institut für Informatik. Fachbere-
ich Informatik und Mathematik. J. W. Goethe-Universität Frankfurt am
Main. 2008 (35). – Frank report

74

Bibliography

[Tho99] Thompson, S.: Haskell. The Craft of Functional Programming . Addison-
Wesley, 1999

[Tra91] Traub, K. R.: Implementation of Non-Strict Functional Programming
LAnguages . Pitman, 1991

[WM95] Wilhelm, R.; Maurer, D.: Compiler Design. Addisson-Wesley Pub-
lishing Company, 1995

75

	Introduction
	Motivation
	Outline

	Background
	Functional Programming
	Use of Functions in Functional Programming
	Referential Transparency
	Evaluation Strategies
	Type System

	Haskell
	Getting Started with Haskell
	Modularity
	Data types
	Function definitions
	List comprehensions
	Monads

	-Calculus
	Syntax of the Pure -calculus
	Operational Semantics of the Pure -calculus
	Extensions of the -calculus

	Concurrent Programming
	What is concurrent computing?
	Concurrency primitives

	Equivalence of Handled Futures and Buffers
	The Calculus (fc)
	Syntax of (fc)
	Variable Bindings and Well-Formedness
	Operational Semantics and Contexts of (fc)

	The Calculus (fch)
	The Calculus (fcb)
	The Calculus (fchb)
	Successfulness of processes in (fchb)
	Convergence and Divergence of processes in (fchb)

	Equivalence of Handled Futures and Buffers
	Encoding Buffers Using Handled Futures
	Encoding Handles Using Buffers

	An Interpreter for the Calculus (fchb)
	What is an interpreter?
	Interpreter design
	Implementation of Ifchb
	Module Syntax
	Module Lexer
	Module Parser
	Module SemAnalysis
	Module EncodingBtoH
	Module EncodingHtoB
	Module Transformation
	Module ReductionRules
	Module Evaluation
	Module Interpreter
	Module Decoding

	Testing
	Conclusion and Further Work
	Bibliography

