
Fachbereich Informatik und Mathematik

Institut für Informatik

Masterarbeit

A Complete Unification Algorithm for
Nominal Unification with Atom

Variables

Yunus David Kerem Kutz

28.04.2017

eingereicht bei

Prof. Dr. Manfred Schmidt-Schauß

Institut für Informatik

Erklärung gemäß Master-Ordnung Informatik 2015 § 35 Abs. 16

Hiermit bestätige ich, dass ich die vorliegende Arbeit selbstständig verfasst habe

und keine anderen Quellen oder Hilfsmittel als die in dieser Arbeit angegebenen

verwendet habe. Ebenso bestätige ich, dass weder diese Arbeit noch Auszüge daraus

für eine andere Prüfung oder Studienleistung verwendet wurden.

Ort, Datum

Unterschrift

Contents

1 Introduction 1

2 Mathematical Tools 3
2.1 Permutations . 3
2.2 Substitutions . 4

3 Of Atoms and Variables 6
3.1 The Nominal Language - NLa 6
3.2 The first extension - NLaS . 9

4 The Nominal Language with Atom Variables - NLAS 12
4.1 Definitions . 12
4.2 Constraints . 15
4.3 Unification Problem . 17
4.4 Complexity of NLAS . 19
4.5 On Most General Unifiers . 20

5 Schmidt-Schauß’s Algorithm 26
5.1 AvNomUnify . 26
5.2 Implementation . 29

6 Conclusion and Outlook 32

Bibliography 32

4

Abstract

Unification describes the techniques of making sets of syntactically different
equations equal by substituting variables with appropriate terms for the given
context. In the nominal language with binders equality is defined up to alpha-
equivalence and a unification replaces expression variables with nominal expres-
sions. It is efficiently implementable[12] and hence, has found its applications
in e.g. logic programming languages such as Alpha-Prolog.

However, in the base language bound names cannot be replaced, since names
are always considered to be concrete rather than variables. Some research has
been done on the unification problem with atom variables[11, 4, 3, 10].

In this thesis the unification problem with atom variables is further investi-
gated. Moreover, as a novel result a proof for the existence of most general is
provided. At last, an implementation of Schmidt-Schauß et.al.’s algorithm[11]
in Haskell is outlined.

Chapter 1

Introduction

The nominal language serves as the ground language in nominal rewriting ap-
proaches [7] and in logic programming languages such as Alpha-Prolog[6, 5].

It consists of atoms/names (hence nominal language), binding constructs
and functions, which are defined in the embedding. Names/Atoms differ from
variables in that they are inherently interpreted to be unequal, i.e. a 6= b for
two different atoms a and b.

One of the advantages of this language lies in the ease with which alpha-
equivalence is provable, since the concept of renaming is provided by adding
name swappings to the language and the concept of a variable not occurring
free in an expression by so called freshness constraints. Thus, two abstractions
with different bound names are α-equivalent iff former’s names is fresh in the
latter expression, and the expression terms are α-equivalent modulo swapping.
This can be written simply as:

λa.e1 ≡α λb.e2 ⇐⇒ a#e2 ∧ e ≡α (a, b)e2

The constructa#e2 is the freshness constraint and requires a not occurring
free in e2. The term (a, b)e2 simply means, that a and b are swapped in e2,
which can be done instantaneously.

To define practical nominal rewrite rules, the nominal language needs to be
extended by expression variables, for otherwise only rewriting on fully defined
terms would be possible. In [7] a nominal rewrite rule is defined as a set of
constraints ∇ and two expressionsl→ r, with the idea being, that an expression
can be rewritten to r, if it is unifiable with l and satisfies all the constraints in
∇ after unification.

As luck would have it, an efficient unification algorithm for the nominal
language with expression variables exists[12], which also serves as the basis for
the unification algorithm in Alpha-Prolog[5]. There are some issues with this
approach however.

Consider for example the nominal rewriting system defined in [7] for β-
reduction.

1

Example. As functions we use {App, sub, to} each of arity 2. Furthermore we
use infix notation for to and omit App for readability. As expression variables
we write S1, S2, S3 and as the only atom in these rules x.

1. (λx.S1) S2 → sub S (x to S2)

2. sub (S1 S2) (x to S3)→(sub S1 (x to S3)) (sub S2 (x to S3))

3. sub x (x to S1)→S1

4. x#S1 ∧ sub S1 (x to S2)→S1

5. y#S2 ∧ sub (λy.S1) (x to S2)→λy.(sub S1 (x to S2))

The left-hand side of the third rule sub x (x to S1) and the expression
sub y (y to S1) are not unifiable for two different names x and y. To get around
this, a nominal rewriting system is defined as the equivariant hull, i.e. closure
under names swappings, of nominal rewrite rules. This means however, that a
different kind of unification is necessary, called equivariant unification, which is
not efficiently decidable[4, 3].

There are also cases, where you might want to employ nominal rewrite rules
with a modulo laxer than equivariance.

Example. Consider the first order theory with the axioms:

A1 (∃x.P (x) ∧ ∃y.Q(x, y)) =⇒ ϕ

A2 ∃x.P (x) ∧Q(x, x)

The second axiom is equivalent to ∃x.P (x) ∧ ∃y.Q(x, x).
An embedding into the nominal language might transform the ∃ into λ, since

both bind a variable and a rewrite system might look somewhat like:

1. λX.And (P X) (λy.Q X Y)→ ϕ′

2. ⊥ → λX.And (P X) (λy.Q X X)

Where the second rule says that the right-hand side can be constructed out of
nothing. The left-hand side of the first rule λX.And (P X) (λY. Q X Y) and
the term λX.And (P X) (λY.Q X X) would need to be unifiable to proof ϕ′,
which requires X and Y not to be concrete atoms, but rather atom variables
and the unification to be not (necessarily) to be equivariant.

Schmidt-Schauß et.al. developed a unification algorithm for this case[11],
that computes a unifier for such a unification problem, i.e. a nominal unification
problem with atom variables and expression variables, in polynomial time, and
checks its satisfiability in non-deterministic polynomial time.

This thesis defines the ground nominal language NLa and its extensions
NLaS which is well researched[7, 12, 9, 1], and NLAS which is not.

It will give a detailed analysis of the latter one and as an original result prove
the existence of most general unifiers. At last we will explain Schmidt-Schauß’s
unification algorithm[11] and showcase an implementation in Haskell.

2

Chapter 2

Mathematical Tools

In this chapter permutations and substitutions are quickly recaptured.

2.1 Permutations

In Algebra, permutations on a set S are defined as bijections from the set S to
itself. For all finite sets S, the permutations form a non-abelian group called
the symmetric group Sym(S), which up to isomorphism depends only on the
cardinality of the set.

Every infinite bijection which differs from the identity function on only a
finite number of elements, can be represented as a bijection on only those el-
ements. Thus, all renamings we deal with, have a finite representation as a
permutation.

Definition 2.1. Let G be a group, X an arbitrary set and ◦ be a binary function
from G×X to X. Then ◦ is a group action iff:

1. (gh) ◦ x = g(h ◦ x)

2. id ◦ x = x

This brings as to our first proposition

Proposition 2.2. (Sym(S), ◦) forms a group, and the application on S defines
a group action on S.

We will usually omit the ◦ symbol for both group action and group operation.
Another useful fact for finite permutations is that every such permutation

is equal to a composition of swappings(transpositions). A swapping refers to a
bijection, which only differs from the identity on two elements and thus swaps
them. We write the swapping of a and b as (a, b).

Consequently, the result of the application is:

• (a, b)a = b

3

• (a, b)b = a

• (a, b)c = c for c 6∈ {a, b}

The representation as a composition of swappings is not unique, e.g. (ab)(bc) =
(ca)(ab). But since application forms a group action, the image of every element
is independent of the representation.

We use this to identify an ordered list of swappings with its induced permu-
tation and use the application of a swapping on an element as a full definition
for the application of the list on S.

Another helpful result of the representation as a list of swappings is the ease
with which the inverse can be computed. Since a swapping (a, b) is its own
inverse, a list of swappings can be simply reversed to obtain the permutations
inverse.

2.2 Substitutions

The exact definition of a substitution depends on any given context. However,
some common features of substitutions are dealt with here.

Basic nomenclature and definitions

Given a language L with a set of variables V belonging to it, a substitution is
defined as a partial function from V to L.

The domain of a substitution sigma, written dom(σ), consists of all variables
which are mapped to terms of the language not considering variables which are
mapped to themselves. The codomain, written codom(σ), consists of all terms
to which variables in the domain are mapped to.

The application of a substitution σ on a term t ∈ L is usually written
as tσ (postfix notation) or σ(t). The result of the application is a term in
which the variables of the substitution are replaced by the terms defined in the
substitution.

Remark 2.3. The resulting term is not necessarily a term of the language, nor
do all kinds of substitutions require all variables in the term, which occur in the
domain to be replaced. Consider for example the substitutionσ = {x → f(a)}
on a First-Order language with a signature consisting of one function f of arity
1, and a constant a.
If we take for example the formula e := x = f(a)∧∃x.x = a, we see x appearing
once bound and once free. A First-Order substitution is commonly defined to
only replace the free occurrences of a variable. Thus, we obtain eσ = f(a) =
f(a)∧∃x.x = a. Otherwise the result would be eσ = f(a) = f(a)∧∃f(a).f(a) =
a, which is not a First Order formula and which may or may not have a useful
semantics (again, depending on the context).

Definition 2.4. The composition of two substitutions σ = {x1 → t1, . . . , x1 →
t1, τ = {y1→ r1, . . . , yk → rk} is defined as:

4

• (σ ◦ τ)(x) = τ(x) iff x 6∈ dom(σ)

• (σ ◦ τ)(x)=(σ(x))τ = τ(σ(x)) else

Intuitively this simply means, that σ is applied first and τ to the resulting
term.

At last, a variable free term is referred to as ground and hence a substitution
which maps variables only to ground terms is called a ground substitution.

Compression via composition

Given a set representation of substitutions, i.e. σ = {x1 → t1, . . . , xn → tn},
the composition of substitutions can easily result in an exponentially larger data
structure than the original substitutions.

Take for example the n substitutions σ1 = {x0 → App x1 x1}, ..., σn =
{xn−1 → App xn xn}. The composition σ1◦· · ·◦σn has sizeO(n) if it is not calcu-
lated. The calculated result is: {x0 → App(. . . (App(Appxnxn)(Appxnxn)) . . .)}
which has size O(2n).

Since the application on a term in composition form can still be done effi-
ciently, it is often more practical to not explicitly calculate the composition.

5

Chapter 3

Of Atoms and Variables

In this chapter, we define the ground nominal language NLa and the extension
NLaS , which adds expression variables to the ground terms.

We also introduce the nominal unification problem in NLaS – a concept
which will reappear in the next chapter with all its necessary sub concepts like
freshness constraints, α-equivalence, solutions and unifiers.

3.1 The Nominal Language - NLa

The nominal language NLa serves as the ground language for nominal unification
problems. It consists of atoms, abstractions and functions. The definition via a
grammar is:

Definition 3.1. Let F be set of functions, with each function f ∈ F being of
fixed arity ar(f). Let At be a countable infinite set of atoms. The syntax of
NLa is then defined as:

e := a | f e1 . . . ear(f) | λa.e
As a convention we use letters a, b, c to denote atoms which are known to

be distinct and x, y, z for atoms, which may be equal. This may seem a bit
confusing at first but will proof useful, since you can distinguish between unequal
and possibly equal variables.

For induction proofs, we define the depth of expressions in NLa.

Definition 3.2. The depth on NLa is defined as:

depth(a) = 1

depth(λa.e) = depth(e) + 1

depth(f e1 . . . ek) = max{depth(ei) : i ∈ {1, . . . , n}}+ 1

This way any proof by induction over the depth needs to consider only atoms
in the base case and function applications and λ-abstractions in the induction
step, where the induction hypothesis holds for the subexpressions.

6

Alpha equivalence is traditionally defined by renaming bound variables, or
names in our case.

Definition 3.3. An α-conversion e → e′ is a capture avoiding renaming of
a single bound atom in a single (sub)abstraction of e. Two NLa expressions
e1, e2 are α-equivalent, written e1 ≡α e2, iff they are reducible to each other by
α-conversions.

Remark 3.4. We defined α-conversion on single bound names and subexpres-
sions to make the definition precise, though other definitions are possible. Later,
we will give an alternative inductive characterization using permutation applica-
tion. Note that two atoms are α-equivalent if they are the same atom, i.e. a ≡α a
but a 6≡α b and two function applications are α-equivalent if all sub expressions
are α-equivalent, i.e. f e1 . . . ear(f) ≡α f e1 . . . ear(f) ⇐⇒ ∀i : ei ≡α ei.

We will use an alternative definition equivalent to this one, which uses re-
namings on all atoms, instead of just bound ones. This has the advantage of
not having to check, if an atom occurs free or bound in any given context and
formulate context free rewrite rules.

Every finite renaming on the set of atoms can be represented as a finite list
of swappings (2.1), i.e. permutations (a, b) with (a, b)a = b, (a, b)b = a and
(a, b)c = c for atoms a, b, c. Thus, we use such representations throughout this
paper and make no distinction between the representation and the permuta-
tion. As mentioned in (2.1), the above description of the application result of
swappings is sufficient to characterize permutation application on atoms.

The application of permutation NLa is defined inductively.

Definition 3.5. The application of a permutation π′ = π(a, b) or π′ = ∅ = id
on NLa is defined as:

π(a, b)a := πb ∅ · e := e

π(a, b)b := πa π′ · (λa.e) := λπ · a.π′ · e
π(a, b)c := πc π′ · (f e1 . . . ear(f)) := f (π · e1) . . . (π · ear(f))

We also formalize the idea, that composition of permutation and application
on NLa are interchangeable.

Lemma 3.6. The permutation application on NLa defines a group action.

Proof. The application on At defines a group action, since it is defined as in 2.1.
The rest follows from induction.

Remark 3.7. For any concrete NLa expression e the application πe can imme-
diately be evaluated. This will not hold, once we use variables for expressions
or atoms.

To define α-equivalence with the help of this permutation application, we
need a second construct, called a freshness constraint. A freshness constraint
has the form a#e and requires a to not occur as a free variable in e.

7

Definition 3.8. A valid freshness constraint is defined inductively by the fol-
lowing rules:

a#b a#λa.e
a#e
a#λb.e

∧ar(f)
i=1 a#ei

a#f e1 . . . ear(f)

Note that both directions are valid, i.e. a#e ⇐⇒ a#λb.e.

Lemma 3.9. A freshness constraint a#e holds iff a does not occur freely in e

Proof. For the base case the hypothesis holds, since all a#b is valid and a#a is
not. For function application we have:

a ∈ free(f e1 . . . ear(f)) ⇐⇒
ar(f)∨
i=1

a ∈ free(ei)

⇐⇒ ¬(

ar(f)∧
i=1

a#ei) ⇐⇒ ¬(a#f e1 . . . ear(f))

For abstractions we have a 6∈ free(λa.e) and a#e for different bound names
and

a 6∈ free(λb.e) ⇐⇒ a 6∈ free(e) ⇐⇒ a#e ⇐⇒ a#λb.e

As an immediate consequence we gain that constraints are invariant under
renaming, i.e. a#e ⇐⇒ πa#πe . Hence any constraint of the form a#πe can
be rewritten as π−1a#e and vice versa.

Now we have all the tools we need to define α-equivalence via permutations
and constraints.

Definition 3.10. The syntactic α-equivalence on NLa is inductively defined
by:

a ∼ a
e1 ∼ e2

λa.e1 ∼ λa.e2

a#e2 ∧ e1 ∼ (a, b)e2

λa.e1 ∼ λb.e2

∧ar(f)
i=1 : ei ∼ e′i

f e1 . . . ek ∼ f e′1 . . . , e′ar(f)

Lemma 3.11. Two expressions e1, e2 ∈ NLa are syntactic α-equivalent iff they
are α-equivalent.

Proof. The base case where e1 = a holds since atoms have no bound atoms and
therefore:

e2 ≡α a ⇐⇒ e2 = a ⇐⇒ e2 ∼ e1

For the induction step we assume the statement to hold for expressions of
depth depth(e1) ≤ n.

8

Case 1. e1 = f e1
1 . . . e

1
ar(f)

Then

e2 ≡α e1 ⇐⇒ e2 = f e2
1 . . . e

2
ar(f) ∧ ∀i : e1

i ≡α e2
i

⇐⇒ e2 = f e2
1 . . . e

2
ar(f) ∧ ∀i : e1

i ∼ e2
i ⇐⇒ e1 ∼ e2

Case 2. e1 = λa.e′1

Then e2 has the form λx.e′2. We distinguish between two subcases:
x = a and x = b.

Case i. e2 = λa.e′2
Then no α-conversion is done on the top expression of e2

to check α-equivalence. Hence:

e2 ≡α e1 ⇐⇒ e′1 ≡α e′2 ⇐⇒ e′1 ∼ e′2 ⇐⇒ e1 ∼ e2

Case ii. e2 = λb.e′2
If the constraint a#e′2 does not hold, then a occurs free
in e2 but not in e1 and they are neither α-equivalent nor
syntactically α-equivalent. Thus, the hypothesis holds.

Now assume a#e′2. Then the swapping (a, b) only substi-
tutes b with a if applied on e′2 and hence also on e2, i.e.
(a, b)e2 = e2[b := a]. Furthermore, since e2 is an abstrac-
tion with b as its bound variable, this substitution is an
α-conversion. Hence:

e2 ≡α e1 ⇐⇒ e2[b := a] ≡α e1 ⇐⇒ (a, b)(λb.e′2) ≡α λa.e′1
⇐⇒ (a, b)e′2 ≡α e′1 ⇐⇒ e1 ∼ (a, b)e′2

⇐⇒ e1 ∼ e2

Since the two definitions are equivalent, ∼ is an equivalence and a congruence
relation. This type of syntactic α-equivalence, provides an intuitive alternative
to de Bruijn Indices at the cost of often poorer performance. A more detailed
analysis of explicit implementations is provided by Berghofer, S., & Urban, C.
in [1].

3.2 The first extension - NLaS

As a first addition to the basic nominal language, expression variables are
added[7, 12]. We will use capital letters Si to denote such variables. Expression
variables can be substituted to arbitrary expressions with ground substitutions.
To add permutation application to the language, one has to add not only ex-
pression variables, but also the application of permutations on such variables.
Such constructs πS are called suspensions. This yields the formal definition of
NLaS

9

Definition 3.12. Let F be set of functions, with each function f ∈ F being
of fixed arity ar(f). Let At be a countable infinite set of atoms and ExVar
be a countable infinite set of expression variables. The syntax of NLaS is then
defined as:

e := a | f e1 . . . ear(f) | λa.e| S | πS

As a first notation on NLaS we introduce ExVar(e) .

Definition 3.13. For any e ∈ NLaS the set of expression variables in e is defined
as ExVar(e).

A unification problem in NLaS is given as a set of “equations”, i.e. e1 =̇ e2,
which are supposed to be α-equivalent, and a set of constraints on NLaS , which
are required to hold. To lift these previously defined concepts into the new
language, one needs substitutions, which map every expression variable to an
expression in NLa.

Definition 3.14. A substitution σ on NLaS is a finite mapping from ExVar
to NLaS . A ground substitution is a substitution with codom(σ) ⊂ NLa. The
application is defined as:

eσ = σ(e) := e′

where e′ is constructed by replacing all S with σ(S) in e.

To formally define a unification problem, we still need concepts of constraints
and equations. In NLaS however, these are abstract construct, where no im-
mediate, complete semantic can be defined on. This is due to the fact, that
equations of the type S =̇ e or constraints of the type a#S are true or false only
when S is substituted. In this section, we will abstain from defining any seman-
tic on it and instead only define solutions of sets of constraints and equations.
Solutions are a certain type of ground substitution.

Definition 3.15. A constraint in NLaS is a construct of the type a#e for any
expression e ∈ NLaS .

Definition 3.16. An equation in NLaS is a construct of the type e1 =̇ e2 for
any expressions e1, e2 ∈ NLaS .

Definition 3.17. A unification problem in NLaS is a tuple P = (Γ,∇) where
Γ consists of equations and ∇ of constraints in NLaS .

Definition 3.18. A solution of a unification problem P = (Γ,∇) is a ground
substitution γ with:

• ∀e1 =̇ e2 ∈ Γ : e1γ ∼ e2γ

• ∀a#e ∈ ∇ : a#eγ holds

A unification problem is solvable if it has a solution. A constraint set ∇ is
solvable if (∅,∇) is solvable.

10

A unification problem will usually have more than one solution.

Example 3.19. Consider for example the unification problem

P = ({S2 =̇ λa.S3, S3 =̇ S4}, {a#S1})

The ground substitution γ = {S1 → S2} ◦ {S2 → λa.a,→ a, S4 → a} is a
solution. Another one would be γ = {S1 → S3} ◦ {S2 → λa.b, S3 → b, S4 → b}.
In fact, there are an infinite number of solutions for this problem.

We introduce unifiers as a way to generalize the multitudes of solutions.

Definition 3.20. A unifier for a unification problem P = (Γ,∇) in NLaS is a
tuple µ = (σ,∇′) where:

• ∇′ is solvable.

• For all ground substitutions γ holds:

σ ◦ γ is a solution of ∇′ =⇒ σ ◦ γ is a solution of P .

Taking a look at the previous example one notices to immediate benefits.
First, one is no longer restricted to ground substitutions, i.e. {S1 → S2} is a
valid substitution on its own. Second, we are free to use constraints to capture
solutions.

This can be used to capture the previous solutions with the unifier ({S3 →
S4, S2 → λa.S3}, {a#S1}). This is in fact a representation of all solutions for
the unification problem, called a most general unifier.

Definition 3.21. A unifier µ = (σ,∇′) for a unification problem P is most
general if for all solutions γ of P there is a ground substitution ρ with:

∀S ∈ ExVar(P) : γ(S) ∼ σρ(S)

It has been proven by Urban, C., Pitts, A. M., & Gabbay, M. J. in [12] that
the unification problem in NLaS is efficiently decidable and most general unifiers
are computable efficiently as well.

Theorem 3.22. (Urban et al. (2003); Calves and Fernández (2008); Levy and
Villaret (2008, 2010)). The unification problem in NLaS is solvable in quadratic
time. Furthermore, for a solvable nominal unification problem P , a most general
unifier can be computed in polynomial time.

11

Chapter 4

The Nominal Language
with Atom Variables -
NLAS

We introduce a third extension to NLa, which adds not only expression variables
but also atom variables. As in NLaS we define its semantics with respect to
NLa. Unlike NLaS however, we do not deal with concrete atoms anymore,
which changes the renaming aspect quite a bit.

Take for example the permutation application (a, b)c in NLaS from [12]. It
can immediately be evaluated to c. In contrast, the permutation application
(A,B)C in NLAS cannot be evaluated without further knowledge about the
equality/inequality of A,B,C, since(A,B)C = A would be implied by B = C
and (A,B)C = C by A 6= C,B 6= C. Thus, similar to the expression suspensions
in NLaS , we need atom suspensions of the form πA, if we want to properly work
with permutation application.

In this chapter, we will lift the concepts required to define a unification
problem in NLaS to the new settings with atom variables. The same names and
symbols will often be used, since specification would be cumbersome and the
concepts in NLaS can be seen as a special case of the ones in NLAS .

Next, we will prove, that the complexity of the unification problem in NLaS
is NP -complete in general and in P in some specific instances.

At last the existence of most general unifiers will be proven, which until now
was an open problem.

4.1 Definitions

The language NLAS can be defined by the following grammar.

Definition 4.1. Let F be set of functions, with each function f ∈ F being of
fixed arity ar(f). Let AtVar be a countable infinite set of atoms and ExVar

12

be a countable infinite set of expression variables. The syntax of NLaS is then
defined as:

e := A | πA | S | πS | f e1 . . . ear(f) | λA.e| λπA.e

where πA is called an atom suspension, πS an expression suspension and all
other expressions are compound terms.

Definition 4.2. Let e be an expression in NLAS . Then AtVar(e) refers to
all atom variables, which occur in e, ExVar(e) to all expression variables and
Var(e) = AtVar ∪ ExVar .

As in NLa we use letters A,B,C when we talk about concrete atom variables
and X,Y, Z when we talk about unknown atom variables, i.e. when we do not
want to distinguish between X = A and X 6= A. Furthermore, we define tools
such as the depth to make proves by induction easier.

Definition 4.3. The depth on NLAS is defined as:

depth(S) = depth(πS) = 1

depth(A) = depth(πA) = 1

depth(λA.e) = depth(λπA.e) = depth(e) + 1

depth(f e1 . . . ek) = max{depth(ei) : i ∈ {1, . . . , n}}+ 1

Definition 4.4. The tops symbol of any expression in NLAS is defined as:

tops(S) = tops(πS) = S

tops(A) = tops(πA) = A

tops(λA.e) = tops(λπA.e) = λ

tops(f e1 . . . ek) = f

Thus, the tops symbol refers to the type of the expression, after permutations
would have been reduced.

One may have noticed by now, that the new language is not strictly speaking
an extension of NLa since it does not allow concrete atoms. In the next section,
we will see a formal explanation of why this does not change our view of NLAS ,
but the basic idea is this: If you enforce all atom variables to be unequal, i.e.
∀A ∈ AtVar , B ∈ AtVar \ {A} : A#B, we can embed any problem in NLaS into
NLAS and vice versa.

The next concept to be lifted into NLAS is the concept of permutations.
First, note that we do not deal with concrete permutations any longer, since any
swapping (A,B) on atom variables may refer to the identity function if A =̇ B
is required by the permutation problem. Thus, any list of swappings represents
a set of permutations. However, we do not distinguish terminologically between
real permutations and permutation variables in the rest of this thesis, since the
latter can be seen as a special case of the former.

13

Example 4.5. Consider the permutation (A,B)(B,C). It could refer to the
identity function if C = A, a circle (a, b, c) if all three variables are instantiated
differently, or swappings (a, b), (b, c) if B = C,A 6= B or A = B,B 6= C.

For now, permutations can be simply seen as lists.

Definition 4.6. A permutation in NLAS is an ordered list of swappings (A,B)
with (A,B) = (B,A). Its inverse π−1 is defined as the reverse list.

The permutation application on NLAS is defined by adding the permutation
to the expression at the appropriate positions. For permutation on permuta-
tion application, we define π1 · (π2 · e) := (π1π2) · e where π1π2 refers to the
concatination. Later, we will introduce rules, to simplify such permutations.

Definition 4.7. The application of a permutation π on NLAS is defined as:

π · S := πS π · (π′S) := (ππ′)S

π ·A := πA π · (π′A) := (ππ′)A

π · (λeb.e) := λπ · eb.π · e π′ · (f e1 . . . ear(f)) := f (π · e1) . . . (π · ear(f))

with eb as an expression either of type A or π′A.

Note that expressions eb will be treated rather differently from other expres-
sions, since such expressions can only evaluate to atoms. We take the time to
define:

Definition 4.8. Expressions of the type A or πA are called basic expressions
and written BEX. Note that BEX ⊂ NLAS .

We define substitutions and ground substitutions next.

Definition 4.9. A substitution σ on NLAS is a finite mapping from AtVar to
BEX and from ExVar to NLAS .

The application is defined as:

eσ = σ(e) := e′

where e′ is constructed by replacing all S with σ(S) and all A with σ(A) in e.

Remark 4.10. A substitution as defined in 4.9 does not necessarily map expres-
sions from NLAS to NLAS , since atom variables in swappings can be replaced
with suspensions. If we allowed nested permutations, e.g. (A, (B, (E,F)G)D),
we could get around this problem. Analysising such a language is not straight-
forward however.

Definition 4.11. A ground substitution γ on NLAS is a finite mapping from
AtVar to At and from ExVar to NLa.

The application is defined as:

eσ = σ(e) := e′

where e′ is constructed by replacing all S with σ(S) and all A with σ(A) in e.

In order to properly define a unification problem, only constraints and equa-
tions remain to be defined.

14

4.2 Constraints

As in NLaS the idea behind constraints is to constrain possible ground substi-
tutions. In this case however, we will do a more detailed analysis of how this is
achieved.

Definition 4.12. A constraint in NLAS is a construct of the type A#e for any
expression e ∈ NLAS .

A constraint of the form A#B is called standardized constraint or standard
constraint. If ∇ is a constraint set with A#B ∈ ∇ or B#A ∈ ∇ we write
∇ ` A#B.

Definition 4.13. A ground substitution γ satisfies ∇, written as γ � ∇, iff
γ(∇) = {Aγ#eγ : A#e ∈ ∇} is a set of valid constraints.

This brings us to our first relation on constraint sets, which we will take as
set of constraints being equivalent.

Definition 4.14. Given two constraint sets ∇1,∇2, the constraint equivalence
#←→ is defined as:

∇1
#←→ ∇2 := for all ground substitutions γ: γ � ∇1 ⇐⇒ γ � ∇2

For example {A#f A B} #←→ {A#B,A#C}, with the right-hand con-
straints being of smaller depth. We capture a few more facts about this relation.

Lemma 4.15. The relation
#←→ is an equivalence relation.

Proof. Symmetry and reflexivity follow directly from the same properties of
⇐⇒ . Transitivity follows, from

(∀γ : γ � ∇1 ⇐⇒ γ � ∇2) ∧ (∀γ : γ � ∇2 ⇐⇒ γ � ∇3)

≡∀γ : (γ � ∇1 ⇐⇒ γ � ∇2) ∧ (γ � ∇2 ⇐⇒ γ � ∇3)

and then the transitivity of ⇐⇒ .

Since semantics of expressions are supposed to be defined with respect to
ground substitutions, we use the following definition to give an alpha like equiv-

alence relation on expressions, similar to
#←→, which will also be used to reduce

expressions in a unification context.

Definition 4.16. For a constraint set ∇ the relation
∇∼ (nabla equivalence) is

defined as:

e1
∇∼ e2 := for all ground substitutions γ: γ � ∇ =⇒ e1γ ∼ e2γ

For ∇ = ∅ the relation is written as just ∼.

15

Note that in the above definition e1γ, e2γ refer to ground expressions and
thus, e1γ ∼ e2γ to α-equivalence.

The next lemma gives the justification for reducing sub expressions and
formalizes the idea, that any reduction, possible in a constraint context, is also
possible in a larger context.

Lemma 4.17. The relation
∇∼ is an equivalence relation and a congruence, i.e.

for all contexts C[] and expression e1
∇∼ e2 the relation C[e1]

∇∼ C[e2] holds.

Furthermore for ∇ ⊂ ∇′ the implication e1
∇∼ e2 =⇒ e1

∇′

∼ e2 holds.

Proof. The relation is an equivalence relation because α-equivalence is an equiv-
alence relation. Contexts in NLAS are of the form:

[], π[], f e1 . . . [] . . . ear(f), λ[].e, λeb.[]

. The statement can be proven by induction over the depths of e1, e2 and the
type of context. For the last statement, take in mind that ρ � ∇′ =⇒ ρ � ∇.
Hence:

(∀ρ : ρ � ∇ =⇒ e1γ ∼ e2γ) =⇒ (∀ρ : ρ � ∇′ =⇒ e1γ ∼ e2γ)

We want to give some examples for
∇∼, which induce size decreasing rewrite

rules.

Proposition 4.18. On NLAS the following
∇∼ hold:

• (A,B)A ∼ B

• (A,B)C
∇∼ C if ∇ ` B#C,A#C

• π(A,A)π′ · e ∼ ππ′e

• π(A,B)(A,B)π′ · e ∼ ππ′e

More rules are possible. For example, if ∇A#C,B#C,A#D,B#D the per-
mutation (A,B)(C,D) can be rewritten to (C,D)(B,C). However, this rule
does not reduce the size of an expression, nor is it terminating.

Such rules can also reduce constraints A#e, by reducing the expression e.
This, combined with other rules, brings us to our next proposition.

Proposition 4.19. The following constraint equivalences holds:

• {A#e} ∪ ∇ #←→ {A#e′} ∪ ∇ if e
∇∼ e′.

• {A#f e1 . . . ear(f)} ∪ ∇
#←→ {A#ei : i ∈ {1, . . . , ar(f)}} ∪ ∇

• {A#λA.e} ∪ ∇ #←→ ∇

16

• {A#e}∪∇ #←→ ∇ if e does not contain any atom or expression variables.

• {A#λB.e} ∪ ∇ #←→ {A#e} ∪ ∇ if ∇ ` A#B.

• {A#(A,B)π · e} ∪ ∇ #←→ {B#π · e} ∪ ∇

• {A#(B,C)π · e} ∪ ∇ #←→ {A#π · e} ∪ ∇ if ∇ ` A#B,A#C

Again, rules were chosen which strictly decrease the depth or size of con-
straints (or the set) and which induce terminating rewrite rules.

4.3 Unification Problem

To define a unification problem, we still need equations as in NLaS . We define:

Definition 4.20. An equation in NLAS is a construct of the type e1 =̇ e2 for
any expressions e1, e2 ∈ NLAS .

The unification problem consists again of equations Γ and constraints ∇,

where we want e1
∇∼ e2 for all equations in Γ

Definition 4.21. A unification problem in NLAS is a tuple P = (Γ,∇) where
Γ consists of equations and ∇ of constraints in NLAS .

Solutions and unifiers are extended naturally from the concepts in NLaS .

Definition 4.22. A solution of a unification problem P = (Γ,∇) is a ground
substitution γ with:

• ∀e1 =̇ e2 ∈ Γ : e1γ ∼ e2γ

• ρ � ∇

A unification problem is solvable if it has a solution. A constraint set ∇ is
solvable if (∅,∇) is solvable.

Definition 4.23. A unifier for a unification problem P = (Γ,∇) in NLAS is a
tuple µ = (σ,∇′) where:

• ∇′ is solvable.

• For all ground substitutions γ holds:

(σ ◦ γ) � ∇′ =⇒ σ ◦ γ is a solution of P .

The next concept to be lifted, is that of a general unifier. Since the existence
of such unifiers remained until now an open question, we introduce the concept
of a complete set of unifiers first.

17

Definition 4.24. A complete set for a unification problem P = (Γ,∇) is a set
of unifiers M = {µ1, . . . , µn}, µi = (σi,∇i) with:

For all solutions γ of P there is a ground substitution ρ with:

γ(A) ∼ (σ ◦ ρ)(A) ∀A ∈ P
γ(A) ∼ (σ ◦ ρ)(S) ∀S ∈ P

If M = {µ} is a complete set, µ is a most general unifier for P .

Example 4.25. Consider the unification problem ({(A,B)C =̇ D}, ∅). A com-
plete set is given by

{{C → B,A→ D}, ∅), {C → A,B → D}, {B#C}), {C → D}, {B#C,A#C})}

This is in fact the smallest complete set with standardized constraints and
only atom to atom substitutions. It illustrates why we allowed atom to suspen-
sion substitutions. Consider the unification problem

({(A1, B1)C1 =̇ D1, . . . , (An, Bn)Cn =̇ Dn}, ∅)

of size 4n. Since all equations are independent of one another, it stands to
reason, that a set of 3n unifiers of this type are necessary for a complete set.
But since we allow more general substitutions, we can compute the most general
unifier

({D1 → (A1, B1)C1, . . . , Dn → (An, Bn)Cn}, ∅)

We capture the fact, that any unifier of a unification problem P needs to
only substitute the variables in P with the following statements.

Definition 4.26. A substitution σ has the capsulation property for a unification
problem P if σ(V) = V for all V ∈ Var , which are not in P .

A unifier (σ,∇′) has the capsulation property if σ has it.

Proposition 4.27. For every set of unifiers M = (µ1, . . . , µn} there is a set
M ′ = {µ′1, . . . , µ′n} such that µ′i agrees with µi on P and µ′i has the capsulation
property.

Unless mentioned otherwise, we assume unifiers to always have the capsula-
tion property.

At last we lift the previous defined concepts of equivalency to unification
problems.

Definition 4.28. For two unification problems P1, P2 the problem equivalency
←→ is defined as:

P1 ←→ P2 := for all ground substitutions γ: γ � P1 ⇐⇒ γ � P2

Proposition 4.29. The following statments for single equations in unification
problems hold:

18

• ({e1 =̇ e2} ∪ Γ,∇)←→ {(e2 =̇ e1} ∪ Γ,∇)

• ({e1 =̇ e2} ∪ Γ,∇)←→ {(π · e1 =̇ π · e2} ∪ Γ,∇)

• ({e1 =̇ e2} ∪ Γ,∇)←→ {(e′1 =̇ e′2} ∪ Γ,∇) if e′i
∇∼ ei

• ({f e1 . . . ear(f) =̇ f e′1 . . . e
′
ar(f)}∪Γ,∇)←→ ({ei =̇ e′i : ∀i ∈ {1, . . . , n}}∪

Γ,∇)

• If ({e1 =̇ e2}∪Γ,∇) is solvable and tops(ei) 6= S then tops(e1) = tops(e2)

4.4 Complexity of NLAS

In this section we analyse the complexity of the unification problem in NLAS .
We will start by showcasing two special instances of this problem, which are in
P. The first one is the case, mentioned in the introduction of the sectiobn 4.2,
where ∇ contains all possible standardized constraints on AtVar(Γ). We will
show that any problem of this case, can be embedded into NLaS . The second
one is the case of ∇ being empty. Since both examples are borrowed from [11],
no full proves will be provided here.

Next, it will be shown, that the problem is NP-complete in general. To
that end, an encoding of the SAT problem as a unification problem in NLAS
will be given to prove NP-hardness. Afterwards, a brute-force non-deterministic
guessing algorithm will be provided to prove NP -completeness.

Lemma 4.30. Let P = (Γ,∇) be a unification problem with
{A#B : A,B ∈ AtVar(P), A 6= B} ⊂ ∇. It is solvable in polynomial time

and a most general unifier can be computed in polynomial time.

Proof. We provide a short sketch. Since all atom variables are supposed to be
instantiated differently, every solution γ of P is of the form γ(Ai) = ai for all
atom variables Ai ∈ P . Using this and that solvability does not depend on
any particular choice of names, we obtain an equivalent problem in NLaS . The
statement follows directly.

Lemma 4.31. Let P = (Γ, ∅) be a unification problem for an arbitrary Γ. It
can then be solved in polynomial time.

Proof. Again, a short sketch. Suppose Γ is solvable. Since the problem does
not contain any constraints, there is a solution γ, which instantiates all atom
variables with the same atom. Afterwards the whole problem collapses to a
first-order unification problem.

Now, we get to the SAT-encoding.

Theorem 4.32. For every clause set C there is a polynomial encoding to a
unification problem P , such that P is solvable iff C is satisfiable.

19

Proof. We give such an encoding for a single clause, since the statement follows
directly from induction. Suppose C = {L1, . . . , Ln} where Li is a literal and
suppose the Boolean variables range over V1, . . . , Vn. To encode the literals, add
for every literal either the equation Li =̇ Vj if Li = Vj or the constraint Li#Vj
if Li = ¬Vj .

Two more atom variables are added: True and False. First we add True#False.
Next we need to make sure, that every variable either evaluates to true or false,
i.e. ρ(True) = ρ(Vi) or ρ(False) = ρ(Vi) for every solution ρ. To ensure this we
add the constraints Vi#λTrue.λFalse.Vi. Since Vi#Vi would imply insolvabil-
ity, this is achieved. We do the same for every literal next, i.e. add constraints
Li#λTrue.λFalse.Li.

At last to encode the clause being true, we add True#λL1.λL2.λLn.T rue.
Since this is a polynomial encoding, and the method can be extended to multiple
clauses without conflict, the statement follows.

Corollary 4.33. The unification problem in NLAS is NP-hard.

At last, we can show NP-completeness.

Corollary 4.34. The unification problem in NLAS is NP-complete.

Proof. We need to show that the unification problem is in NP. We shall be
content with providing the algorithm and refer for the full proof to Schauß
et.al.[11]. Let P = (Γ,∇) be an arbitrary unification problem. Then guess on all
pairs Ai, Aj whether they are supposed to be equal or not. If the former is true
apply σ(Ai) = Aj on P . For the latter add Ai#Aj to ∇. The resulting problem
(Γ′,∇′) satisfies the conditions of 4.30 and thus, can be solved in polynomial
time.

4.5 On Most General Unifiers

For some time, the assumption stood, that most general unifiers do not exist for
NLAS . One motivating example for this conjecture was the unification problem
({(A,B)C =̇ C},∇)[12]. A complete set of unifiers derived by guessing the
equality/inequality of A,B and C is:

{({A→ C,B → C}, ∅), (∅, A#C,B#C)}

There is no obvious way on how to combine both unifiers, which lead to the
conjecture that most general unifiers do not exist. However, since we allow not
only standardized constraints the alternative approach of rewriting equations as
constraints yields the desired result. In this example a unifier would be given
by (∅, C#λ(A,B)C.C). This is due to the fact, that any solution γ has to
instantiate C and (A,B)C with the same atom to not get the contradictory
constraint C#C. We generalize this result.

20

Lemma 4.35. Let ({πA =̇ X},∇) be a solvable unification problem. Then a
most general unifier is given by:

(∅, {X#λπA.X} ∪ ∇)

Proof. Let ρ be a ground substitution. The constraint ρ(x)#ρ(λπA.X) is sat-
isfied iff ρ(x) = ρ(πA) or ρ(X)#ρ(X), the latter of which is never true. Hence
ρ is a solution of ({πA = X},∇) iff ρ satisfies {X#λπA.X} ∪ ∇.

We proof the existence of most general unifiers for all solvable unification
problems in three steps. First, we show, that if every unification problem with
|Γ| = 1 has a most general unifier, then every unification problem has a most
general unifier. This will be a simple consequence of the fact, that complete sets
can be computed by going through equations iteratively. Afterwards, we will
analyse for which unification problems with |Γ| = 1 we candirectly write down
a unifier, and which can be transformed to an equivalent one of reduced depth.
This will yield an algorithm for computing most general unifiers.

For the first part, we need the following lemma.

Lemma 4.36 (Continuation lemma). Let P = (Γ1 ∪ Γ2,∇) be a solvable uni-
fication problem. Let M1 = {µ1, . . . , µn} be a complete set of unifiers for
P1 = (Γ1,∇) with µi = (σi,∇i).

Let Si = {µi1, . . . , µik} be a complete set of unifiers for the problem (σi(Γ2),∇i)
with µi = (σij ,∇ij) or ∅ if the problem is not solvable and let Ci = {(σiσij ,∇ij) :

(σij ,∇ij) ∈ Si} be the continuation of Si.

Then
⋃n
i=1 Ci is a complete set of unifiers for P .

Proof. First we need to show that
⋃n
i=1 Ci is a set of unifiers for P .

Let γ be a ground substitution with γ � ∇ij . Then σijγ is a solution of
(σi(Γ2),∇i) and for all e1 =̇ e2 ∈ Γ2:

σijγ(e1σi) ∼ σijγ(e2σi)

⇐⇒ σiσ
i
jγ(e1) ∼ σiσijγ(e2)

Furthermore for all e1 =̇ e2 ∈ Γ1 we have by definition e1σi ∼ e2σi and
hence:

σiσ
i
jγ(e1) = σijγ(e1σi)

∼ σijγ(e2σi) = σiσ
i
jγ(e2)

At last, since σijγ � ∇i and µi = (σi,∇i) is a unifier for P1 = (Γ1,∇) we get:

σiσ
i
jγ ` ∇

So (σiσ
i
j ,∇ij) is a unifier for P .

Now we will show completeness.
Let ρ be a solution of P . Then ρ is also a solution of P1 and there are

(σi,∇i) ∈M1 and a ground substitution γ1 with:

21

ρ(A) =σiγ1(A) for A ∈ AtVar(P1)

ρ(S) ∼σiγ1(S) for S ∈ ExVar(P1)

Let γ(V) := γ1(V) for V ∈ V ar(P1) and γ(V) := ρ(V) otherwise. Since
σi(V) = V if V 6∈ Var(P1) we get:

ρ(A) =σiγ(A) for A ∈ AtVarP)

ρ(S) ∼σiγ(S) for S ∈ ExVar(P)

Since ρ is also a solution for (Γ2,∇) we get for all e1 =̇ e2 ∈ Γ2:

σiγ(e1) ∼ ρ(e1)

∼ ρ(e2) ∼ σiγ(e2)

Hence γ is a solution for (σi(Γ2),∇). Since Si is complete there are (σij ,∇ij) ∈
Si and a ground substitution γ2 with:

γ(A) =σijγ2(A) for A ∈ AtVar(σ1(Γ2))

γ(S) ∼σijγ2(S) for S ∈ ExVar(σ1(Γ2))

Now, let γ′(V) := γ2(V) for V ∈ V ar(σ1(Γ2)) and γ′(V) := γ(V) otherwise.
Since σij(V) = V if V 6∈ Var(σ1(Γ2)) we get:

γ(A) =σijγ
′(A) for A ∈ AtVar

γ(S) ∼σijγ′(S) for S ∈ ExVar

Combining our results, we derive:

ρ(A) =σiσ
i
jγ
′(A) for A ∈ AtVar(P)

ρ(S) ∼σiσijγ′(S) for S ∈ ExVar(P)

Corollary 4.37. Suppose every problem of the form ({eq1},∇) has a most
general unifier. Then every unification problem has a most general unifier.

Proof. By induction. The base case |Γ| = 1 holds, because it is the assumption.
Now assume the induction hypothesis to hold for all |Γ| = n − 1 and let P =
({eq1, . . . , eqn} ∪ {eqn+1},∇) for some ∇. Due to the induction hypothesis
({eq1, . . . , eqn},∇) has a most general unifier µ1 = (σ1,∇1) and the problem
({σ2(eqn+1)},∇1) has a most general unifier µ2 = (σ2,∇2). Thanks to the
continuation lemma, we know that (σ1 ◦ σ2,∇2) is a most general unifier for
P .

22

Now to the second part. We have already proven, that equations of the form
X =̇ πA have a most general unifier. The same is true for S =̇ e or S =̇ e

Proposition 4.38. The following problems have most general unifiers, provided
that they are solvable.

• ({S =̇ e},∇) has the most general unifier ({S → e},∇).

• ({πS =̇ e},∇) has the most general unifier ({S → π−1 · e},∇).

The same results also apply for e =̇ S, e =̇ πS and πA =̇ X. We capture
this with the following result.

Corollary 4.39. Let Γ = {e1 =̇ e2}, with depth(e1) = 1 or depth(e2) = 1.
Then all solvable unification problems (Γ,∇) have a most general unifier

Proof. Follows directly from lemma 4.35 and proposition 4.38.

Now only equations with tops(ei) = f and tops(ei) = λ remain. For func-
tions proposition 4.29 provides a method to transform the unification problem
into another one with equations of lower depth. Abstractions however, need a
little more work.

Lemma 4.40. The following problem equivalency holds:

({λA.e1 =̇ λB.e2},∇)←→ ({e1 =̇ (A,B) · e2},∇∪ (A#λB.e2))

Proof. Let ρ be a ground substitution. We consider the cases ρ(A) = ρ(B) and
ρ(A) 6= ρ(B) and show, that in both cases ρ is a solution of P iff it is a solution
of P ′.

First ρ(A) = ρ(B). The constraint A#λB.e2 is already satisfied and thus
both constraint sets are satisfied simultaneously. We only need to show, that
the equations are solved at the same time. Since ρ(A) = ρ(B) the swapping
(A,B)ρ = id and hence

ρ(λA.e1) ∼ ρ(λB.e2) ⇐⇒ ρ(e1) ∼ ρ(e2) ⇐⇒ ρ(e1) ∼ ρ((A,B)e2)

Now let ρ(A) 6= ρ(B). By definition ρ(λA.e1) ∼ ρ(λB.e2) iff ρ(e1) ∼
ρ((A,B) · e2) and ρ(A)#ρ(e2). Since ρ(A) 6= ρ(B) the latter constraint is sat-
isfied iff ρ(A)#ρ(λB.e2) and hence either both constraint sets are satisfied or
none is.

Thus, ρ is a solution of P iff it is a solution of P ′.

The next question is how to deal with abstractions of the form λπA.e. If
nested permutations were allowed, we could use lemma 4.40 in these cases as
well, but since we restricted ourselves to proper permutations, a flattening of
atom suspensions is necessary. We formalize this approach.

23

Definition 4.41. Let Γ = {e1 =̇ e2} ∪ Γ′ be the equations of the unification
Problem P = (Γ,∇).

If πA ∈ subEx(e1) then a flattening can be conducted by replacing πA with
a fresh flattening variable X.

To that end, let ef1 be constructed by replacing πA with X in arbitrary
subexpressions in e1. A permutation flattened problem is then defined by:

Γf ={ef1 =̇ e2, X =̇ πA} ∪ Γ′

P f =(Γf ,∇)

Lemma 4.42. Suppose Mf is a complete set of (standardized) unifiers for a
permutation flattened problem P f = (Γf ,∇), with construction names as in
definition 4.41.

Then Mf is a complete set of (standardized) unifiers for the original problem
P = (Γ,∇).

Proof. Let ρ be an arbitrary solution of P . First, we construct a solution for
P f by;

ρf (X) :=ρ(πA)

ρf (B) :=ρ(B) for B 6= X,B ∈ AtV ar
ρf (S) :=ρ(S) for S ∈ ExV ar

Since X 6∈ ∇,Γ′ the constructed substitution ρf operates like ρ on (Γ′,∇)
and hence is a solution for it.

Furthermore, for the flattened part of the problem, i.e. e1 =̇ e2, X =̇ πA we
obtain:

ρf (X) = ρf (πA)

ρf (ef1) = ρ(e1) ∼ ρ(e2) = ρf (e2)

Because of X 6∈ AtV ar(e2) and the construction method of ef1 . So ρf is a
solution of P f .

Since Mf is complete, there is a ground substitution γ and a unifier µ =
(σ,∇′) ∈Mf with:

ρf (B) =σγ(B) for B ∈ AtV ar(P f) = AtV ar(P) ∪ {X}
ρf (S) ∼σγ(S) for S ∈ ExV ar(P)

From the definition of ρf we derive

ρ(B) =σγ(B) for B ∈ AtV ar(P)

ρ(S) ∼σγ(S) for S ∈ ExV ar(P)

So Mf is a complete set for P .

24

At last we have everything we need to prove the existence of most general
unifiers for all solvable unification problems.

Theorem 4.43. Suppose P = (Γ,∇) is solvable. Then there is a most general
unifier (σ,∇′) of P .

Proof. We prove the statement for Γ = {e1 =̇ e2} by providing a recursive algo-
rithm, which produces a most general unifier for solvable unification problems
with only one equation.

If depth(e1) = 1 or depth(e2) = 1 corollary 4.39 provides the most general
unifier. The only cases left to study are f e1

1 . . . , e
1
ar(f) =̇ f e2

1 . . . , e
2
ar(f) and

λeb.e =̇ λe′b.e
′.

Case 1. f e1
1 . . . , e

1
ar(f) =̇ f e2

1 . . . , e
2
ar(f)

Due to proposition 4.29 the unification problem is equivalent to:

({e1
1 =̇ e2

1, . . . , e
1
ar(f) =̇ e2

ar(f)},∇)

We compute a most general unifier for ({e1
1 =̇ e2

1},∇) , apply the
resulting substitution to the remaining equations and repeat, as in
lemma 4.36. The result is a most general unifier.

Case 2. λeb.e =̇ λe′b.e
′.

Case i. eb = X ∧ e′b = Y

We can apply lemma 4.40 to get the equivalent problem
({e1 =̇ (A,B) · e2},∇ ∪ (A#λB.e2)), where the equation
is of reduced depth. Apply the algorithm on this problem.

Case ii. eb = πX ∨ e′b = π′Y

In this case, the expressions eb, e
′
b are flattened as in defi-

nition 4.41. The resulting unification problem is:

({Xf =̇ eb, Y
f =̇ e′b, λX

f .e =̇ λY f .e′},∇)

where Xf , Y f are new variables. The first two equations
can directly be written as constraints according to lemma
4.35. For the remaining problem ({λXf .e =̇ λY f .e′},∇′)
case i can be applied.

The statement follows for arbitrary unification problems from corollary 4.37.

25

Chapter 5

Schmidt-Schauß’s
Algorithm

The algorithm developed by Schmidt-Schauß et.al.[11] computes a complete set
of unifiers in non-deterministic time, and checks the validity of the unifiers
in NP-time. Despite working in NP-time, the algorithm is promising to have
good practical properties for unification problems with a low amount of atom
variables.

The algorithm consists of two sub algorithms. The first one, AvNomUnify,
works mainly on the equations, while the second one, AvSolNabla, tests the
validity of the computed unifiers. Both algorithm use lazy equality guessing of
atom variables to their end.

In this chapter, we will deal with AvNomUnify. A description of the algo-
rithm will be given as well as an outline of an implementation. The entire source
code with AvSolNabla will be attached to this thesis.

5.1 AvNomUnify

The algorithm expects a unification problem(Γ,∇) and a threshold theq as the
input. The threshold is supposed to be p(size(Γ,∇)) for some sufficiently large
polynomial p to prevent possible exponential growth of the problem. The exis-
tence of such a polynomial is proven in [11]. Moreover, 4N2 · (Maxarity + 2)
is proven to be a possible choice for the polynomial, where N is the size of the
input.

AvNomUnify works on the triple (Γ, θ,∇), where initially Γ and ∇ is taken
from the input and θ is empty. The goal of the algorithm is to clear out Γ by
deducing equivalent substitutions or constraints. If the rules to achieve this do
not suffice, equality/inequality guesses are done on pairs of atom variables.

As a first step, the rules defined in proposition 4.18, proposition 4.19 and
proposition 4.29 are used to define a terminating set of sound terminating rewrite
rules on expressions, constraints and equations. We define the rewriting systems:

26

Definition 5.1. For a constraint set ∇, the expression reduction
∇−→ is defined

as:

• (A,B)A
∇−→ B

• (A,B)C
∇−→ C if ∇ ` B#C,A#C

• π(A,A)π′ · e ∇−→ ππ′e

• π(A,B)(A,B)π′ · e ∇−→ ππ′e

• e
∇−→ e′ if e′ arises by reducing subexpressions with

∇−→.

Definition 5.2. For a constraint set {A#e} ∪∇, the expression reduction
#−→

is defined as:

• {A#e} ∪ ∇ #−→ {A#e′} ∪ ∇ if ei
∇−→ e′i

• {A#f e1 . . . ear(f)} ∪ ∇
#−→ {A#ei : i ∈ {1, . . . , ar(f)}} ∪ ∇

• {A#λA.e} ∪ ∇ #−→ ∇

• {A#e} ∪∇ #−→ ∇ if e does not contain any atom or expression variables.

• {A#λB.e} ∪ ∇ #−→ {A#e} ∪ ∇ if ∇ ` A#B.

• {A#(A,B)π · e} ∪ ∇ #−→ {B#π · e} ∪ ∇

• {A#(B,C)π · e} ∪ ∇ #−→ {A#π · e} ∪ ∇ if ∇ ` A#B,A#C

Definition 5.3. For a unification problem ({e1 =̇ e2}∪Γ), the equation reduc-

tion
Γ−→ is defined as:

• ({e1 =̇ e2} ∪ Γ,∇)←→ ({e′1 =̇ e′2} ∪ Γ,∇) if ei
Γ−→ e′i

• ({e1 =̇ e1} ∪ Γ,∇)←→ (Γ,∇)

Now to the algorithm. The rules by which it is defined can be divided
into five categories. Rewriting rules, equation transforming rules, substitution
inducing rules, equality guessing and failure rules. We keep the names from [11],
though our ordering differs. All of these rules can only be applied if the size of
(Γ,∇) after application is not larger than the threshold.

Rewriting

(Simp1) (Γ, θ,∇) ∧ Γ
Γ−→ Γ′

(Γ′, θ,∇)

(Simp2) (Γ, θ,∇) ∧ ∇ #−→ ∇′
(Γ, θ,∇′)

27

Substitution Inducing

(SD3) ({S =̇ πS′} ∪ Γ, θ,∇) ∧ ∇ #−→ ∇′
(Γ[πS′/S], θ ◦ {S → πS′},∇)

, π can be ∅.

(SD4a)
({A =̇ πB} ∪ Γ, θ,∇) ∧ A does not appear in a permutation of (Γ,∇)

(Γ[πB/A], θ ◦ {A→ πB},∇)

(SD4b)
({A =̇ πB} ∪ Γ, θ,∇) ∧ B does not appear in a permutation of (Γ,∇)

(Γ[π−1A/B], θ ◦ {B → π−1A},∇)

(SD4c)
({A =̇ B} ∪ Γ, θ,∇)

(Γ[B/A], θ ◦ {A→ B},∇)

(SD4d)
({A =̇ (A,B)eb} ∪ Γ, θ,∇)

({B =̇ eb} ∪ Γ, θ,∇)

(SD4e)
({A =̇ (B,C)eb} ∪ Γ, θ,∇) ∧ ∇ ` A#B,A#C

({A =̇ eb} ∪ Γ, θ,∇)

(SD8)
({S =̇ πS} ∪ Γ, θ,∇)

(Γ, θ,∇∪ {A#λπA.S : A ∈ AtVar(π)})

(MMS) If all ei are compound terms and S does not occur in Γ nor in any
ei(see CycleDetection):

({S =̇ e1, . . . , S =̇ en} ∪ Γ, θ,∇)
({e1 =̇ e2, . . . , e1 =̇ en} ∪ Γ, θ ◦ {S → e1},∇)

Equation Transforming

(SD5)
({f e1 . . . ear(f) =̇ f e′1 . . . e

′
ar(f)} ∪ Γ, θ,∇)

({ei =̇ e′i : ∀i ∈ {1, . . . , n}} ∪ Γ, θ,∇)

(SD6)
({λπA.e =̇ λπA.e′} ∪ Γ, θ,∇)

({e =̇ e′} ∪ Γ, θ,∇)
, where π can be ∅

(SD7)
({λA.e =̇ λB.e′} ∪ Γ, θ,∇) ∧ ∇ ` A#B

({e =̇ (A,B) · e′} ∪ Γ, θ,∇∪ {A#e′})

28

Failure

(ClashFailure) If e1, e2 are neither variables nor suspensions:

({e1 =̇ e2} ∪ Γ, θ,∇) ∧ tops(e1) 6= tops(e2)
Fail

(VarFail)
({A =̇ e2} ∪ Γ, θ,∇) ∧ e2 is not a suspension

Fail

(CycleDetection) If all ei are compound terms:

({S =̇ e1, . . . , S =̇ en} ∪ Γ, θ,∇) −→ ∧ tops(e1) 6= tops(e2)
Fail

.

(FreshFail)
(Γ, θ,∇) ∧ ∇ � A#A

Fail

Equality Guessing

(GuessEQ)
(Γ, θ,∇) ∧ ∇ 6� A#B

(Γ[B/A], θ ◦ {A→ B},∇[B/A]) | (Γ, θ,∇∪ {B#A})

The last rule is only applied, if no other rule can be, since exploring alternatives
can be rather expensive. Once Γ = ∅ is reached, the unifier (θ,∇) is returned.
It will then be checked for solvability by AvSolNabla. While Sd8 is arguably
not substitution inducing, we nevertheless categorize it as such, since it reasons
on an expression variable.

5.2 Implementation

In this section, we describe the implementation of AvNomUnify bottom up,
i.e. from the expression implementation, over constraints and constraint sets,
equation sets, to a unifier and the algorithm itself. For concrete implementations
of each of these, check the source code.

Notes for the Implementation

We do some analysis on the rules, to what type of equations they apply to and
in which situations these equation types cannot be reduced by any rule. and in
which cases they can be applied

We start with the identification of the types of equation to which the rules can
be applied to. As a convention, we move variables to the left side of an equation

29

if possible, with a priority on expression variables. This can be achieved by the
prioritized ruleset:

πS =̇ e→ S =̇ π−1e e =̇ πS → S =̇ π−1e

πA =̇ e→ A =̇ π−1e e =̇ πA→ π−1A =̇ e

, where π = ∅ is possible. The below markings are again prioritized, meaning
that a lower marking is only be applied if none of the higher ranked marking
conditions apply.

Any equation where the left side is an expression variable is substitution
inducing. If the right side is a suspension, the rule can be applied without
any check except for the size check. Otherwise it is a compound equation and
need special care as defined in MMS. These equations are marked as expression
equations with subtypes suspension equations and compound equations.

Equations, where the left side is an atom variable are substitution inducing
as well. Such equations are marked as atom equations.

On any not clashing set only two types of equations apply, which will be men-
tioned in one run. Equations between functions are called function equations
and equations between abstractions are called lambda equations.

Every substitution inducing and equation transforming can only be applied
to exactly one of these types. The failure rules operate on each type of equation
as follows:

• ClashFailure can occur on lambda equations and function equations

• VarFail can occur only on atom equations.

• CycleDetection can only occur on compound equations.

The last failure rule does not occur on equations.

Description

First, the nominal language needs to be defined. Variables are defined as simple
containers i.e.

data AtomVariable a = AtVar a
data ExpressionVariable a = ExVar a

The expressions are implemented as two different kinds. First BasicNlasEx-
pression as expressions of the form πAor A, second ExtendedNlasExpressions,
as all valid expressions with possible permutation applications. This double
implementation is useful to not allow complicated construct in abstractions.
Constraints are defined as a tuple of an AtomVariable and an ExtendedNlasEx-
pression, i.e. Data Constraint a = Con (AtomVariable a) (ExtendedNlasExpres-
sion a) The set of constraints, is defined as a tuple of standardized constraints,
A#B, A#S, and non-standard constraints. The following functions are defined
on it:

30

satsUnEqual :: ConstraintSet a -> AtomVariable a -> AtomVariable a -> Bool
size :: ConstraintSet a -> Int
isStandardized :: ConstraintSet a -> Bool
nablaIsConsistent :: ConstraintSet a -> Bool
substituteExVar :: (...) -> Either Failure (ConstraintSet a)
substituteAtom :: (...) -> Either Failure (ConstraintSet a)
applySimplification :: (...) Either Failure (ConstraintSet a)

where (...) has been used, to fit the signatures to the printable area. Note
that every substitution and simplification can lead to a Failure, where we dis-
tinguish between:

data Failure = FreshFail | SubFail | SolveFail | TooLarge | VarFail | Clash
| CycleInCompoundEquations

Next, the equation sets, unification problems and unifiers need to be im-
plemented. Since the three concepts intersect in the implementation, we will
explain them in one run.

The equation set is defined as a quadruple of different equations. The unifier
is a tuple of substitution and a constraint set, and the unification problem a tuple
of an equation set and a unifier (not just a constraint set). This is done, since
the algorithm effectively work on (Γ, (θ,∇)) not just on (Γ,∇).

Unlike the constraint set, no function to apply simplification rules is directly
defined on the unification problem, but rather those rules are directly defined
on the appropriate equation types. Again, every rule application is checked for
validity, where TooLarge and SubFail, indicate non-critical failures while the
other rules imply insolvability of the unification problem.

At last we can go on to give a description of AvNomUnify. It expects a
unification problem as its input and applies implication rules until a fixed state
has been reached, where failures of the type SubFail and TooLarge are always
reverted and thus, can never be reached. Once such a state has been reached a
check is done. If Γ is empty or ∇ inconsistent the algorithm terminates. Other-
wise a guess is performed on (Γ,∇) and the resulting problems are attempted
to be sovled.

31

Chapter 6

Conclusion and Outlook

In this thesis, we analyzed the ground nominal language NLa and gave an alter-
native syntactical definition for alpha equivalence with the help of name swap-
pings and freshness constraints.

We gave a quick overview of classical nominal rewrite systems with concrete
atoms and expression variables, NLaS , which were analyzed by [7, 9, 12] and for
which an efficient unification algorithm was provided in [12].

Afterwards we lifted the previously defined concept of constraints and unifi-
cation problems into a new setting without concrete atoms NLAS but with atom
variables instead. We showed what kind of equivalences hold in this setting, if
nothing is known, or if constraints are given. In fact, further meaning was given
to the word constraint, since we proved, that a set of constraints does strictly
constrain the set of possible ground substitutions a unification problem can be
solved by.

Some analysis of the complexity of the unification problem in NLAS . We
demonstrated its NP-completeness and showed, that even without concrete
atoms, a similar environment to NLaS can be induced.

Next the existence of most general unifiers, a problem which remained open
until now, was proven algorithmically, mainly by flattening abstractions and
expression atom to atom suspension equations as constraints.

At last an implementation of Schmidt-Schauß et.al. ’s algorithm was out-
lined, which performs lazy equality guessing on atom variables. Compared to
the algorithm induced by the proof of the most general unifier, it has the bene-
fit of not introducing new atom variables to the problem and of guessing atom
variables at the stage, where unifiers are computed, rather than delaying such
a guessing to the solvability check.

The following interesting problems remain open, however. First, what com-
plexity result does the restriction of the number of atom variables yield? Second,
which practices in rewrite systems yields good or bad algorithmic properties?
And connected with this, which classes of constraint sets are efficiently checkable
for satisfiability? At last, an implementation of an algorithm, which produces
most general unifiers remains to be done as well.

32

Bibliography

[1] Berghofer, S., and Urban, C. A head-to-head comparison of de bruijn
indices and names. Electronic Notes in Theoretical Computer Science 174,
5 (2007), 53 – 67. Proceedings of the First International Workshop on
Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP
2006).

[2] Calvès, C., and Fernández, M. The First-Order Nominal Link.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 234–248.

[3] Cheney, J. The Complexity of Equivariant Unification. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004, pp. 332–344.

[4] Cheney, J. Equivariant unification. Journal of Automated Reasoning 45,
3 (Oct 2010), 267–300.

[5] Cheney, J., and Urban, C. System description: Alpha-prolog, a fresh
approach to logic programming modulo alpha-equivalence, 2003.

[6] Cheney, J., and Urban, C. Nominal logic programming. ACM Trans.
Program. Lang. Syst. 30, 5 (Sept. 2008), 26:1–26:47.

[7] Fernández, M., and Gabbay, M. J. Nominal rewriting. Information
and Computation 205, 6 (2007), 917 – 965.

[8] Levy, J., and Villaret, M. Nominal unification from a higher-order
perspective. ACM Trans. Comput. Logic 13, 2 (Apr. 2012), 10:1–10:31.

[9] Pitts, A. M. Nominal logic, a first order theory of names and binding.
Information and Computation 186, 2 (2003), 165 – 193. Theoretical Aspects
of Computer Software (TACS 2001).

[10] Schmidt-Schauß, M., and Sabel, D. Unification of program expres-
sions with recursive bindings. In PPDP ’16: Proceedings of the 18th In-
ternational Symposium on Principles and Practice of Declarative Program-
ming (New York, NY, USA, September 2016), J. Cheney and G. Vidal,
Eds., ACM, pp. 160–173.

33

[11] Schmidt-Schauß, M., Sabel, D., and Kutz, Y. Nominal unification
with atom-variables. J. Symbolic Comput. (2017). accepted for publication,
to appear.

[12] Urban, C., Pitts, A. M., and Gabbay, M. J. Nominal unification.
Theoretical Computer Science 323, 1 (2004), 473 – 497.

34

	Introduction
	Mathematical Tools
	Permutations
	Substitutions

	Of Atoms and Variables
	The Nominal Language - bold0mu mumu NLaNLaschmidtSchaussNLaNLaNLaNLa
	The first extension - bold0mu mumu NLaSNLaSdeBruijnVsSyntacticNLaSNLaSNLaSNLaS

	The Nominal Language with Atom Variables - bold0mu mumu NLASNLASnomUniNLASNLASNLASNLAS
	Definitions
	Constraints
	Unification Problem
	Complexity of bold0mu mumu NLASNLASnomUniNLASNLASNLASNLAS
	On Most General Unifiers

	Schmidt-Schauß's Algorithm
	AvNomUnify
	Implementation

	Conclusion and Outlook
	Bibliography

